Arid Zone Research ›› 2024, Vol. 41 ›› Issue (1): 114-123.doi: 10.13866/j.azr.2024.01.11
• Plant Ecology • Previous Articles Next Articles
Alayi HANATI(),LIU Yanxia,LAN Haiyan()
Received:
2023-06-11
Revised:
2023-10-07
Online:
2024-01-15
Published:
2024-01-24
Alayi HANATI, LIU Yanxia, LAN Haiyan. Research progress on the mechanism of formation, absorption and utilization of condensed water on leaf trichomes of desert plants[J].Arid Zone Research, 2024, 41(1): 114-123.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Eckardt F D, Soderberg K, Coop L J, et al. The nature of moisture at Gobabeb, in the central Namib Desert[J]. Journal of Arid Environments, 2013, 93(36): 7-19.
doi: 10.1016/j.jaridenv.2012.01.011 |
[2] |
Agam N, Berliner P R. Dew formation and water vapor adsorption in semi-arid environments-A review[J]. Journal of Arid Environments, 2006, 65(4): 572-590.
doi: 10.1016/j.jaridenv.2005.09.004 |
[3] |
Hill A J, Dawson T E, Shelef O, et al. The role of dew in Negev Desert plants[J]. Oecologia, 2015, 178(2): 317-327.
doi: 10.1007/s00442-015-3287-5 pmid: 25783489 |
[4] |
Emery N C. Foliar uptake of fog in coastal California shrub species[J]. Oecologia, 2016, 182(3): 731-742.
doi: 10.1007/s00442-016-3712-4 pmid: 27568025 |
[5] |
Fernández V, Bahamonde H A, Javier Peguero-Pina J, et al. Physico-chemical properties of plant cuticles and their functional and ecological significance[J]. Journal of Experimental Botany, 2017, 68(19): 5293-5306.
doi: 10.1093/jxb/erx302 pmid: 28992247 |
[6] | Burgess S S O, Dawson T E. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): Foliar uptake and prevention of dehydration[J]. Plant, Cell & Environment, 2004, 27(8): 1023-1034. |
[7] |
Ohrui T, Nobira H, Sakata Y, et al. Foliar trichome-and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon[J]. Planta, 2007, 227(1): 47-56.
doi: 10.1007/s00425-007-0593-0 pmid: 17674031 |
[8] |
Martin C E, Willert V D J. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in Southern Africa[J]. Plant Biology, 2000, 2(2): 229-242.
doi: 10.1055/s-2000-9163 |
[9] | Berry Z C, Emery N C, Gotsch S G, et al. Foliar water uptake: Processes, pathways, and integration into plant water budgets[J]. Plant, Cell & Environment, 2019, 42(2): 410-423. |
[10] |
Bickford C P. Ecophysiology of leaf trichomes[J]. Functional Plant Biology, 2016, 43(9): 807-814.
doi: 10.1071/FP16095 pmid: 32480505 |
[11] |
Schreel J D M, Leroux O, Goossens W, et al. Identifying the pathways for foliar water uptake in beech (Fagus sylvatica L.): A major role for trichomes[J]. The Plant Journal, 2020, 103(2): 769-780.
doi: 10.1111/tpj.14770 pmid: 32279362 |
[12] | Brewer C A, Smith W K, Vogelmann T C. Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets[J]. Plant, Cell & Environment, 1991, 14(9): 955-962. |
[13] |
Masrahi Y S. Glochids microstructure and dew harvesting ability in Opuntia stricta (Cactaceae)[J]. Journal of King Saud University-Science, 2020, 32(8): 3307-3312.
doi: 10.1016/j.jksus.2020.09.015 |
[14] | 庄艳丽, 赵文智. 荒漠植物雾冰藜和沙米叶片对凝结水响应的模拟实验[J]. 中国沙漠, 2010, 30(5): 1068-1074. |
[Zhuang Yanli, Zhao Wenzhi. Experimental study of effects of artificial dewon Bassia dasyphylla and Agriophyllum squarrosum[J]. Journal of Desert Research, 2010, 30(5): 1068-1074.] | |
[15] |
Gürsoy M, Harris M T, Downing J O, et al. Bioinspired fog capture and channel mechanism based on the arid climate plant Salsola crassa[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529(25): 195-202.
doi: 10.1016/j.colsurfa.2017.05.071 |
[16] |
Baier W. Studies on dew formation under semi-arid conditions[J]. Agricultural Meteorology, 1966, 3(1-2): 103-112.
doi: 10.1016/0002-1571(66)90008-2 |
[17] |
Ebner M, Miranda T, Roth-Nebelsick A. Efficient fog harvesting by Stipagrostis sabulicola (Namib dune bushman grass)[J]. Journal of Arid Environments, 2011, 75(6): 524-531.
doi: 10.1016/j.jaridenv.2011.01.004 |
[18] | Mares M A. Encyclopedia of Deserts[M]. Norman: University of Oklahoma Press, 2017: 383-384 |
[19] | Lancaster J, Lancaster N, Seely M K. Climate of the central Namib Desert[J]. Madoqua, 1984, 14(1): 5-61. |
[20] |
Shanyengana E S, Henschel J R, Seely M K, et al. Exploring fog as a supplementary water source in Namibia[J]. Atmospheric Research, 2002, 64(1-4): 251-259.
doi: 10.1016/S0169-8095(02)00096-0 |
[21] |
Hiatt C, Fernandez D, Potter C. Measurements of fog water deposition on the California Central Coast[J]. Atmospheric and Climate Sciences, 2012, 2(4): 525.
doi: 10.4236/acs.2012.24047 |
[22] | Hao X, Li C, Guo B, et al. Dew formation and its long-term trend in a desert riparian forest ecosystem on the eastern edge of the Taklimakan Desert in China[J]. Journal of Hydrology, 2012, 472(50): 90-98. |
[23] |
Hayes M A, Chapman S, Jesse A, et al. Foliar water uptake by coastal wetland plants: A novel water acquisition mechanism in arid and humid subtropical mangroves[J]. Journal of Ecology, 2020, 108(6): 2625-2637.
doi: 10.1111/jec.v108.6 |
[24] | Williams H F. Absorption of water by the leaves of common mesophytes[J]. Journal of the Elisha Mitchell Scientific Society, 1932, 48(1): 83-100. |
[25] | Cernusak L A, Ubierna N, Jenkins M W, et al. Unsaturation of vapour pressure inside leaves of two conifer species[J]. Scientific Reports, 2018, 8(1): 1-7. |
[26] | Vesala T, Sevanto S, Grönholm T, et al. Effect of leaf water potential on internal humidity and CO2 dissolution: Reverse transpiration and improved water use efficiency under negative pressure[J]. Frontiers in Plant Science, 2017, 8(8): 54-64. |
[27] | Simonin K A, Santiago L S, Dawson T E. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit[J]. Plant, Cell & Environment, 2009, 32(7): 882-892. |
[28] |
Koch K, Bhushan B, Jung Y C, et al. Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion[J]. Soft Matter, 2009, 5(7): 1386-1393.
doi: 10.1039/b818940d |
[29] |
Lange O L, Lösch R, Schulze E D, et al. Responses of stomata to changes in humidity[J]. Planta, 1971, 100(1): 76-86.
doi: 10.1007/BF00386887 pmid: 24488104 |
[30] |
Brighigna L, Palandri M R, Giuffrida M, et al. Ultrastructural features of the Tillandsia usneoides L. absorbing trichome during conditions moisture and aridity[J]. Caryologia, 1988, 41(2): 111-129.
doi: 10.1080/00087114.1988.10797853 |
[31] | Cui L, Yingying M, Nina W, et al. The overlooked functions of trichomes: Water absorption and metal detoxication[J]. Plant, Cell & Environment, 2022, 46(3): 669-687. |
[32] | Stone E C. The ecological importance of dew[J]. The Quarterly Re-view of Biology, 1963, 38(4): 328-341. |
[33] | Monteith J L. Dew: Facts and fallacies[J]. The Water Relations of Plants, 1963: 37-56. |
[34] | 刘志东, 吕光辉, 张雪妮, 等. 叶片被毛对干旱区短命植物狭果鹤虱生理生态特征的影响[J]. 干旱区研究, 2017, 34(5): 1101-1108. |
[Liu Zhidong, Lv Guanghui, Zhang Xueni, et al. Response of physiological and ecological indexes of ephemeral plant Lappula semiglabra with leaf hairs in Arid Area[J]. Arid Zone Research, 2017, 34(5): 1101-1108.] | |
[35] | 李洁, 张铭芳. 植物表皮毛发育调控的研究进展[J]. 北方园艺, 2020, 44(23): 133-139. |
[Li Jie, Zhang Mingfang. Advances in regulation of plant trichome development[J]. Northern Horticulture, 2020, 44(23): 133-139.] | |
[36] |
Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40(40): 546-551.
doi: 10.1039/tf9444000546 |
[37] |
Williams C R, Kruger A, Gage K S, et al. Comparison of simultaneous rain drop size distributions estimated from two surface disdrometers and a UHF profiler[J]. Geophysical Research Letters, 2000, 27(12): 1763-1766.
doi: 10.1029/1999GL011100 |
[38] |
Wier K A, McCarthy T J. Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant[J]. Langmuir, 2006, 22(6): 2433-2436.
pmid: 16519435 |
[39] |
Holder C D. The relationship between leaf hydrophobicity, water droplet retention, and leaf angle of common species in a semi-arid region of the western United States[J]. Agricultural and Forest Meteorology, 2012, 152(49): 11-16.
doi: 10.1016/j.agrformet.2011.08.005 |
[40] |
Wang J, Wu Y, Cao Y, et al. Influence of surface roughness on contact angle hysteresis and spreading work[J]. Colloid and Polymer Science, 2020, 298(115): 1107-1112.
doi: 10.1007/s00396-020-04680-x |
[41] |
Percy K E, Jensen K F, Mcquattie C J. Effects of ozone and acidic fog on red spruce needle epicuticular wax production, chemical composition, cuticular membrane ultrastructure and needle wettability[J]. New Phytologist, 1992, 122(1): 71-80.
doi: 10.1111/j.1469-8137.1992.tb00054.x pmid: 33874042 |
[42] |
Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir, 2005, 21(3): 956-961.
pmid: 15667174 |
[43] | Kolyva F, Stratakis E, Rhizopoulou S, et al. Leaf surface characteristics and wetting in Ceratonia siliqua L.[J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2012, 207(8): 551-556. |
[44] |
Peschel S, Beyer M, Knoche M. Surface characteristics of sweet cherry fruit: Stomata-number, distribution, functionality and surface wetting[J]. Scientia Horticulturae, 2003, 97(3-4): 265-278.
doi: 10.1016/S0304-4238(02)00207-8 |
[45] |
Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95(1): 65-87.
doi: 10.1098/rstl.1805.0005 |
[46] |
Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.
doi: 10.1021/ie50320a024 |
[47] |
Barthlott W, Mail M, Bhushan B, et al. Plant surfaces: Structures and functions for biomimetic innovations[J]. Nano-Micro Letters, 2017, 9(2): 23-63.
doi: 10.1007/s40820-016-0125-1 pmid: 30464998 |
[48] | Brewer C A, Smith W K. Patterns of leaf surface wetness for montane and subalpine plants[J]. Plant, Cell & Environment, 1997, 20(1): 1-11. |
[49] |
Pandey S, Nagar P K. Leaf surface wetness and morphological characteristics of Valeriana jatamansi grown under open and shade habitats[J]. Biological Plantarum, 2002, 45(2): 291-294
doi: 10.1023/A:1015165210967 |
[50] |
Ren L Q, Wang S J, Tian X M, et al. Non-Smooth morphologies of typical plant leaf surfaces and their anti-adhesion effects[J]. Journal of Bionics Engineering, 2007, 4(1): 33-40.
doi: 10.1016/S1672-6529(07)60010-9 |
[51] |
Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677.
doi: 10.1006/anbo.1997.0400 |
[52] |
Beysens D. The formation of dew[J]. Atmospheric Research, 1995, 39(1-3): 215-237.
doi: 10.1016/0169-8095(95)00015-J |
[53] |
Narhe R D, Beysens D A. Nucleation and growth on a superhydrophobic grooved surface[J]. Physical Review Letters, 2004, 93(7): 076103.
doi: 10.1103/PhysRevLett.93.076103 |
[54] | Pruppacher H R, Klett J D. Microstructure of atmospheric clouds and precipitation[J]. Physics Today, 1979, 32(6): 56-56. |
[55] |
Agam N, Berliner P R. Dew formation and water vapor adsorption in semi-arid environments-A review[J]. Journal of Arid Environments, 2006, 65(4): 572-590.
doi: 10.1016/j.jaridenv.2005.09.004 |
[56] |
Malek E, Mccurdy G, Giles B. Dew contribution to the annual water balances in semi-arid desert valleys[J]. Journal of Arid Environments, 1999, 42(2): 71-80.
doi: 10.1006/jare.1999.0506 |
[57] |
Jacobs A F G, Heusinkveld B G, Berkowicz S M. A simple model for potential dewfall in an arid region[J]. Atmospheric Research, 2002, 64(1-4): 285-295.
doi: 10.1016/S0169-8095(02)00099-6 |
[58] |
Sadia H, Zulfiqar A, Bakar A M S, et al. Leaf prickle hairs and longitudinal grooves help wheat plants capture air moisture as a water-smart strategy for a changing climate[J]. Planta, 2021, 254(1): 18-29.
doi: 10.1007/s00425-021-03645-w pmid: 34196834 |
[59] |
Hülskamp M, Miséra S, Jürgens G. Genetic dissection of trichome cell development in Arabidopsis[J]. Cell, 1994, 76(3): 555-566.
doi: 10.1016/0092-8674(94)90118-x pmid: 8313475 |
[60] |
Bar M, Shtein I. Plant trichomes and the biomechanics of defense in various systems, with Solanaceae as a model[J]. Botany, 2019, 97(12): 651-660.
doi: 10.1139/cjb-2019-0144 |
[61] | Vogel S, Müller-Doblies U. Desert geophytes under dew and fog: The “curly-whirlies” of Namaqualand (South Africa)[J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2011, 206(1): 3-31 |
[62] |
Roth-Nebelsick A, Ebner M, Miranda T, et al. Leaf surface structures enable the endemic namib desert grass Stipagrostis sabulicola to irrigate itself with fog water[J]. Journal of the Royal Society Interface, 2012, 9(73): 1965-1974.
doi: 10.1098/rsif.2011.0847 pmid: 22356817 |
[63] |
Ito F, Komatsubara S, Shigezawa N, et al. Mechanics of water collection in plants via morphology change of conical hairs[J]. Applied Physics Letters, 2015, 106(13): 133701.
doi: 10.1063/1.4916213 |
[64] | Ju J, Bai H, Zheng Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3(1): 1-6. |
[65] |
Wu J, Wang N, Wang L, et al. Unidirectional water-penetration composite fibrous film via electrospinning[J]. Soft Matter, 2012, 8(22): 5996-5999.
doi: 10.1039/c2sm25514f |
[66] |
Wang H, Ding J, Dai L, et al. Directional water-transfer through fabrics induced by asymmetric wettability[J]. Journal of Materials Chemistry, 2010, 20(37): 7938-7940.
doi: 10.1039/c0jm02364g |
[67] | Malik F T, Clement R M, Gethin D T, et al. Hierarchical structures of cactus spines that aid in the directional movement of dew droplets[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2073): 0110. |
[68] |
Kim K, Kim H, Ho Park S, et al. Hydraulic strategy of cactus trichome for absorption and storage of water under arid environment[J]. Frontiers in Plant Science, 2017, 8(8): 1777-1785.
doi: 10.3389/fpls.2017.01777 |
[69] |
Lorenceau E, Quéré D. Drops on a conical wire[J]. Journal of Fluid Mechanics, 2004, 510(49): 29-45.
doi: 10.1017/S0022112004009152 |
[70] |
Bai F, Wu J, Gong G, et al. Biomimetic “cactus spine” with hierarchical groove structure for efficient fog collection[J]. Advanced Science, 2015, 2(7): 1500047.
doi: 10.1002/advs.v2.7 |
[71] |
Ren F, Li G, Zhang Z, et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection[J]. Journal of Materials Chemistry A, 2017, 5(35): 18403-18408.
doi: 10.1039/C7TA04392A |
[72] | Escalona J M, Bota J, Medrano H. Distribution of leaf photosynthesis and transpiration within grapevine canopies under different drought conditions[J]. VITIS-Journal of Grapevine Research, 2003, 42(2): 57-64. |
[73] |
Schreel J D M, Leroux O, Goossens W, et al. Identifying the pathways for foliar water uptake in beech (Fagus sylvatica L.): A major role for trichomes[J]. The Plant Journal, 2020, 103(2): 769-780.
doi: 10.1111/tpj.14770 pmid: 32279362 |
[74] |
Wullschleger S D, Meinzer F C, Vertessy R A. A review of whole-plant water use studies in tree[J]. Tree Physiology, 1998, 18(8-9): 499-512.
doi: 10.1093/treephys/18.8-9.499 |
[75] | Yang Q, Xiao H, Zhao L, et al. Stable isotope techniques in plant water sources: A review[J]. Sciences in Cold and Arid Regions, 2010, 2(2): 112-122. |
[76] |
Burgess S S O, Adams M A, Turner N C, et al. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants[J]. Tree Physiology, 2001, 21(9): 589-598.
pmid: 11390303 |
[77] | Meron M, Grimes D W, Phene C J, et al. Pressure chamber procedures for leaf water potential measurements of cotton[J]. Irrigation Science, 1987, 8(3): 215-222. |
[78] | Dainty J. The Discovery of Water Potential[J]. Discoveries in Plant Biology, 1998, 2: 271-285. |
[79] | Waseem M, Nie Z F, Yao G Q, et al. Dew absorption by leaf trichomes in Caragana korshinskii: An alternative water acquisition strategy for withstanding drought in arid environments[J]. Physiologia Plantarum, 2021, 1(1): 10-15. |
[80] |
Stabentheiner E, Zankel A, Pölt P. Environmental scanning electron microscopy-a versatile tool in studying plants[J]. Protoplasma, 2010, 246(1-4): 89-99.
doi: 10.1007/s00709-010-0155-3 pmid: 20446004 |
[81] |
Craig S, Beaton C D. A simple Cryo‐SEM method for delicate plant tissues[J]. Journal of Microscopy, 1996, 182(2): 102-105.
doi: 10.1046/j.1365-2818.1996.128409.x |
[82] |
Zheng Y, Han D, Zhai J, et al. In situ investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro-and nanostructure from water condensation[J]. Applied Physics Letters, 2008, 92(8): 084106.
doi: 10.1063/1.2887899 |
[83] | James B. Handbook of Biological Confocal Microscopy[M]. Berlin: Springer Science & Business Media, 2006. |
[84] |
Hepler P K, Gunning B E S. Confocal fluorescence microscopy of plant cells[J]. Protoplasma, 1998, 201(3-4): 121-157.
doi: 10.1007/BF01287411 |
[85] |
Pina A L C B, Zandavalli R B, Oliveira R S, et al. Dew absorption by the leaf trichomes of Combretum leprosum in the Brazilian semiarid region[J]. Functional Plant Biology, 2016, 43(9): 851-861.
doi: 10.1071/FP15337 pmid: 32480509 |
[86] | Yanxia L, Hanat A, Haiyan L. Characterization of leaf trichomes and their influence on surface wettability of Salsola ferganica, an annual halophyte in the desert[J]. Physiologia Plantarum, 2023, 173(3): e13905. |
[1] | SUN Qixing, YANG Xiaodong, LI Borui, KONG Cuicui, Elhamjan ANWAR, ZHOU Jie, LYU Guanghui. Effects of hydraulic traits on the species abundance distribution pattern of desert plant communities [J]. Arid Zone Research, 2023, 40(3): 412-424. |
[2] | JIANG Xingchi,LI Junyao,CHEN Feng,LI Shenglin,Wensuyaletu ,WANG Guolin,WANG Shaokun. Soil bacterial characteristics of six plant communities in the desert areas to the North of Yinshan Mountains [J]. Arid Zone Research, 2022, 39(4): 1122-1132. |
[3] | YU Yang,ZHANG Zhihao,YANG Jianming,CHAI Xutian,ZENG Fanjiang. Stoichiometric characteristics of leaves and fine roots in Alhagi sparsifolia in response to the addition of nitrogen and water [J]. Arid Zone Research, 2022, 39(2): 551-559. |
[4] | ZHOU Jing,YAN Cheng,GUO Ruizeng,YAN Ziyan. Plant community allocation modes of protection greenbelt in an arid gravel desert region [J]. Arid Zone Research, 2021, 38(3): 812-820. |
[5] | WANG Fei, GUO Shu-jiang, HAN Fu-gui, WANG Fang-lin, ZHANG Wei-xing, ZHANG Yu-nian. Study on leaf water uptake traits of desert plants in Minqin [J]. Arid Zone Research, 2020, 37(5): 1256-1263. |
[6] | CHANG Yun-Hua, LIU Xue-Jun, LI Kai-Hui, 吕Jin-Ling , SONG Wei-. Research Progress in Atmospheric Nitrogen Deposition [J]. , 2012, 29(6): 972-979. |
[7] | ZHANG Wei, LIU Xue-jun, HU Yu-kun, LI Kai-hui, SHEN Jian-lin, LUO Xiao-sheng, SONG Wei. Analysis on Input of Atmospheric Nitrogen Dry Deposition in Urumqi [J]. , 2011, 28(4): 710-716. |
|