[1] |
Venable D L. The evolutionary ecology of seed heteromorphism[J]. American Naturalist, 1985, 5(126):577-595.
|
[2] |
Mandák B. Seed heteromorphism and the life cycle of plants: A literature review[J]. Preslia, 1997, 69(2):129-159.
|
[3] |
Imbert E. Ecological consequences and ontogeny of seed heteromorphism[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2002, 5(1):13-36.
doi: 10.1078/1433-8319-00021
|
[4] |
王雷, 姜黎, 田长彦. 盐分对异子蓬异型种子植株生长和矿质营养的影响[J]. 干旱区研究, 2018, 35(3):510-514.
|
|
[ Wang Lei, Jiang Li, Tian Cangyang. Effects of NaCl on the growth and mineral nutrient content of plants grown from dimorphic seeds of Suaeda aralocaspica[J]. Arid Zone Research, 2018, 35(3):510-514. ]
|
[5] |
Redondogómez S, Mateosnaranjo E, Cambrollé J, et al. Carry-over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens[J]. Annals of Botany, 2008, 102(1):103-112.
doi: 10.1093/aob/mcn069
pmid: 18463109
|
[6] |
Jiang L, Wang L, Yin C H, et al. Differential salt tolerance and similar responses to nitrogen availability in plants grown from dimorphic seeds of Suaeda salsa[J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2012, 207(8):565-571.
|
[7] |
Ungar I A. Ecophysiology of Vascular Halophytes[M]. Boca Raton, FL: CRC Press, 1991.
|
[8] |
魏岩, 刘鹏伟, 安沙舟. 野榆钱菠菜的果实多型性及其萌发对策[J]. 干旱区研究, 2007, 24(6):835-839.
|
|
[ Wei Yan, Liu Pengwei, An Shazhou. Study on fruit polymorphism and germination measures of Atriplex aucheri Moq. seeds[J]. Arid Zone Research, 2007, 24(6):835-839. ]
|
[9] |
Wang L, Baskin J M, Baskin C C, et al. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspicavia multiple maternal effects[J]. BMC Plant Biology, 2012, 12:170. https://doi.org/10.1186/1471-2229-12-170.
doi: 10.1186/1471-2229-12-170
pmid: 23006315
|
[10] |
Jiang L, Wang L, Mohsin T, et al. High and differential strontium tolerance in germinating dimorphic seeds of Salicornia europaea[J]. Seed Science and Technology, 2020, 48(2):231-239.
doi: 10.15258/sst.2020.48.2.10
|
[11] |
Jiang L, Wang L, Baskin C C, et al. Maternal effects on seed heteromorphism: A dual dynamic bet hedging strategy[J]. Seed Science Research, 2019, 29(2):149-153.
doi: 10.1017/S0960258519000114
|
[12] |
杨帆, 曹德昌, 杨学军, 等. 盐生植物角果碱蓬种子二型性对环境的适应策略[J]. 植物生态学报, 2012, 36(8):781-790.
doi: 10.3724/SP.J.1258.2012.00781
|
|
[ Yang Fan, Cao Dechang, Yang Xuejun, et al. Adaptive strategies of dimorphic seeds of the desert halophyte Suaeda corniculata in saline habitat[J]. Chinese Journal of Plant Ecology, 2012, 36(8):781-790. ]
doi: 10.3724/SP.J.1258.2012.00781
|
[13] |
Yang Fan, Baskin J M, Baskin C C, et al. Divergence in life history traits between two populations of a seed-dimorphic halophyte in response to soil salinity[J]. Frontiers in Plant Science, 2017, 8:1028. https://uknowledge.uky.edu/biology_facpub/136.
doi: 10.3389/fpls.2017.01028
pmid: 28670319
|
[14] |
Yang F, Yang X J, Baskin J M, et al. Transgenerational plasticity provides ecological diversity for a seed heteromorphic species in response to environmental heterogeneity[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17(3):201-208.
doi: 10.1016/j.ppees.2015.03.003
|
[15] |
Yang F, Baskin J M, Baskin C C, et al. Effects of germination time on seed morph ratio in a seed-dimorphic species and possible ecological significance[J]. Annals of Botany, 2015, 115(1):137-45.
doi: 10.1093/aob/mcu210
pmid: 25395107
|
[16] |
Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes[J]. Methods Enzymol, 1987, 148:350-382.
|
[17] |
Jiang L, Wang L, Zhang K, et al. Copper-induced similar changes in growth and physiological responses of plants grown from dimorphic seeds of Suaeda slasa[J]. Pakistan Journal of Botany, 2018, 50(3):871-877.
|
[18] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
|
|
[ Bao Shidan. Soil and Agricultural Analysis[M]. Beijing: China Agriculture Press, 2000. ]
|
[19] |
Li X W, Wang F W, Sun D Q, et al. Cloning and characterization of SucNHX1, a novel vacular Na+/H+ antiporter from the halophyte Suaeda corniculata that enhances the saline-alkali tolerance in Arabidopsis by its overexpression[J]. Plant Cell, Tissue and Organ Culture, 2018, 134(3):395-407.
doi: 10.1007/s11240-018-1430-9
|
[20] |
Liu L, Wang Y, Wang N, et al. Cloning of a vacuolar H (+)-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis[J]. Journal of Integrative Plant Biology, 2011, 53(9):731-42.
|
[21] |
魏磊, 庞秋颖, 张爱琴, 等. 盐碱胁迫对角果碱蓬幼苗光合特性的影响[J]. 东北林业大学学报, 2012, 40(1):32-35.
|
|
[ Wei Lei, Pang Qiuying, Zhang Aiqin, et al. Effects of salt and alkali stresses on photosynthetic characteristics of Suaeda corniculata seedlings[J]. Journal of Northeast Forestry University, 2012, 40(1):32-35. ]
|
[22] |
白红霞, 斯琴巴特尔. 草地盐碱化对角果碱蓬出苗及生长的影响[J]. 北方农业学报, 2012, 40(5):36-38, 49.
|
|
[ Bai Hongxia, Sechenbater. Effect of grassland salinization on emergence and growth of Suaeda corniculata[J]. Journal of Northern Agriculture, 2012, 40(5):36-38, 49. ]
|
[23] |
李凯伦, 李艳迪, 郭建荣, 等. Na+促进真盐生植物盐地碱蓬种子产量初探[J]. 植物生理学报, 2020, 56(1):49-56.
|
|
[ Li Kailun, Li Yandi, Guo Jianrong, et al. Preliminary study on Na+-mediated improvement of seed yield in euhalophyte Suaeda salsa[J]. Plant Physiology Journal, 2020, 56(1):49-56. ]
|
[24] |
Matinzadeh Z, Breckle S W, Mirmassoumi M, et al. Ionic relationships in some halophytic Iranian Chenopodiaceae and their rhizospheres[J]. Plant and Soil, 2013, 372:523-539.
doi: 10.1007/s11104-013-1744-7
|