Arid Zone Research ›› 2021, Vol. 38 ›› Issue (5): 1393-1400.doi: 10.13866/j.azr.2021.05.21
• Plant and Plant Physiology • Previous Articles Next Articles
ZHUANG Weiwei1,2,3(),HOU Baolin1,2,3
Received:
2021-04-06
Revised:
2021-05-19
Online:
2021-09-15
Published:
2021-09-24
ZHUANG Weiwei,HOU Baolin. Nitrogen uptake strategies of short-lived plants in the Gurbantunggut Desert[J].Arid Zone Research, 2021, 38(5): 1393-1400.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Composition analysis of soil samples at various soil depths in different months"
4月 | 5月 | |||
---|---|---|---|---|
0~5 cm | 5~10 cm | 0~5 cm | 5~10 cm | |
土壤有机碳/% | 0.160±0.010 | 0.113±0.006 | 0.187±0.021 | 0.123±0.006 |
总氮/% | 0.135±0.013 | 0.119±0.020 | 0.150±0.017 | 0.111±0.009 |
铵态氮/(μg·g-1) | 12.687±1.429 | 10.563±0.707 | 14.133±2.599 | 9.820±1.968 |
硝态氮/(μg·g-1) | 22.760±3.525 | 17.227±1.58 | 22.457±2.465 | 16.950±3.071 |
有机氮/(μg·g-1) | 13.517±1.920 | 10.813±1.367 | 12.647±2.086 | 9.993±2.113 |
含水量/% | 29.410±4.136 | 45.390±4.577 | 19.443±3.099 | 31.460±2.731 |
Tab. 2
Total 15N uptake by four ephemeral plants in April 2019"
物种 | 0~5 cm | 5~10 cm | ||||||
---|---|---|---|---|---|---|---|---|
硝态氮 | 铵态氮 | 甘氨酸 | 总氮 | 硝态氮 | 铵态氮 | 甘氨酸 | 总氮 | |
A | 2.70±0.21a | 1.30±0.12a | 2.09±0.17a | 6.08±0.25a | 1.96±0.17a | 0.84±0.12a | 1.16±0.12a | 3.97±0.16a |
B | 3.50±0.63b | 3.09±0.21c | 2.30±0.16a | 9.23±0.54c | 2.65±0.24b | 2.17±0.12c | 1.92±0.16b | 6.64±0.30c |
C | 5.11±0.26c | 4.15±0.28d | 3.14±0.24b | 12.40±0.56d | 3.78±0.33c | 3.17±0.21d | 2.40±0.25c | 9.36±0.28d |
D | 3.33±0.24ab | 2.06±0.21b | 2.93±0.21b | 8.33±0.24b | 2.12±0.17a | 1.22±0.20b | 1.93±0.24b | 5.26±0.25b |
Tab. 3
Total 15N uptake by four ephemeral plants in May 2019"
物种 | 0~5 cm | 5~10 cm | ||||||
---|---|---|---|---|---|---|---|---|
硝态氮 | 铵态氮 | 甘氨酸 | 总氮 | 硝态氮 | 铵态氮 | 甘氨酸 | 总氮 | |
A | 5.69±0.28ab | 4.68±0.24ab | 3.78±0.33ab | 14.15±0.78a | 4.84±0.24ab | 3.76±0.17ab | 3.25±0.16b | 11.85±0.66b |
B | 5.29±0.30a | 5.02±0.20b | 3.35±0.28a | 13.66±0.86a | 4.29±0.32a | 4.04±0.16b | 3.26±0.16b | 11.59±0.44b |
C | 6.11±0.57bc | 7.19±0.56c | 4.31±0.40b | 17.61±1.19b | 5.37±0.44bc | 5.97±0.46c | 3.14±0.24ab | 14.48±1.22c |
D | 6.51±0.29c | 4.18±0.28a | 3.41±0.21a | 14.10±1.32b | 5.82±0.20c | 3.44±0.18a | 2.83±0.17a | 12.09±1.29a |
[1] |
Zhu Q, Zhuang Q. Modeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal forest and tundra ecosystems[J]. Biogeosciences, 2013, 10(12): 7943-7955.
doi: 10.5194/bg-10-7943-2013 |
[2] | 刘秋霞, 任涛, 廖世鹏, 等. 不同氮素供应对油菜苗期生长及碳氮分配的影响[J]. 中国油料作物学报, 2019, 41(1): 92-100. |
[ Liu Qiuxia, Ren Tao, Liao Shipeng, et al. Effect of different nitrogen application on seedling growth and allocation of carbon and nitrogen in oil seed rape[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(1): 92-100. ] | |
[3] |
Schoener T W. Resource partitioning in ecological communities[J]. Science, 1974, 185(4145): 27-39.
pmid: 17779277 |
[4] |
Gough L, Osenberg C W, Gross K L, et al. Fertilization effects on species density and primary productivity in herbaceous plant communities[J]. Oikos, 2000, 89(3): 428-439.
doi: 10.1034/j.1600-0706.2000.890302.x |
[5] |
Clark C M, Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 2008, 451(7179): 712-715.
doi: 10.1038/nature06503 |
[6] | 杨洁, 单立山, 白亚梅, 等. 氮添加和降水变化对红砂生理指标的影响[J]. 干旱区研究, 2021, 38(2): 460-468. |
[ Yang Jie, Shan Lishan, Bai Yamei, et al. Effects of nitrogen addition and precipitation on Reaumuria soongorica physiological indices[J]. Arid Zone Research, 2021, 38(2): 460-480. ] | |
[7] |
姚凡云, 朱彪, 杜恩在. 15N自然丰度法在陆地生态系统氮循环研究中的应用[J]. 植物生态学报, 2012, 36(4): 346-352.
doi: 10.3724/SP.J.1258.2012.00346 |
[ Yao Fanyun, Zhu Biao, Du Enzai. Use of 15N natural abundance in nitrogen cycling of terrestrial ecosystems[J]. Chinese Journal of Plant Ecology, 2012, 36(4): 346-352. ]
doi: 10.3724/SP.J.1258.2012.00346 |
|
[8] |
Mechthild T, Celine M D. Source and sink mechanisms of nitrogen transport and use[J]. New Phytologist, 2018, 217(1): 35-42.
doi: 10.1111/nph.14876 pmid: 29120059 |
[9] |
Chen J, Carrillo Y, Pendall E, et al. Soil microbes compete strongly with plants for soil inorganic and amino acid nitrogen in a semiarid grassland exposed to elevated CO2 and warming[J]. Ecosystems, 2015, 18(5): 867-880.
doi: 10.1007/s10021-015-9868-7 |
[10] | 闫小莉, 胡文佳, 马远帆, 等. 异质性供氮环境下杉木、马尾松、木荷氮素吸收偏好及其根系觅氮策略[J]. 林业科学, 2020, 56(2): 1-11. |
[ Yan Xiaoli, Hu Wenjia, Ma Yuanfan, et al. Nitrogen uptake preference of Cunninghamia lanceolata, Pinus massoniana, and Schima superba under heterogeneous nitrogen supply environment and their root foraging strategies[J]. Scientia Silvae Sinicae, 2020, 56(2): 1-11. ] | |
[11] | 张立运, 陈昌笃. 论古尔班通古特沙漠植物多样性的一般特点[J]. 生态学报, 2002, 22(11): 1923-1930. |
[ Zhang Liyun, Chen Changdu. On the general characteristics of plant diversity of Gurbantunggut Sandy Desert[J]. Acta Ecologica Sinica, 2002, 22(11): 1923-1930. ] | |
[12] |
Wang R X, Tian Y Q, Ou Y S, et al. Nitrogen acquisition strategies used by Leymus chinensis and Stipa grandis in temperate steppes[J]. Biology and Fertility of Soils, 2016, 52(7): 951-961.
doi: 10.1007/s00374-016-1128-2 |
[13] | 陶冶, 吴甘霖, 刘耀斌, 等. 古尔班通古特沙漠典型灌木群落土壤化学计量特征及其影响因素[J]. 中国沙漠, 2017, 37(2): 305-314. |
[ Tao Ye, Wu Ganlin, Liu Yaobin, et al. Soil stoichiometry and their influencing factors in typical shrub communities in the Gurbantunggut Desert[J]. China Journal of Desert Research, 2017, 37(2): 305-314. ] | |
[14] |
Mckane R B, Johnson L C, Shaver G R, et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra[J]. Nature, 2002, 415(6867): 68-71.
doi: 10.1038/415068a |
[15] | Jacob A, Leuschner C. Complementarity in the use of nitrogen forms in a temperate broad-leaved mixed forest[J]. Plant Ecology & Diversity, 2015, 8(2): 243-258. |
[16] |
Karina E C, Pernille L S, Anders M, et al. Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi[J]. Oecologia, 2008, 155(4): 771-783.
doi: 10.1007/s00442-008-0962-9 |
[17] | 孟森. 林木细根氮素吸收动态及氮转运蛋白基因表达[D]. 杨凌: 西北农林科技大学, 2016. |
[ Meng Sen. Nitrogen Dynamic Uptake and Genetic Expression of Translocator of Tree Species in Fine Roots[D]. Yangling: Northwest Agriculture & Forestry University, 2016. ] | |
[18] |
Stoelken G, Simon J, Ehlting B, et al. The presence of amino acids affects inorganic N uptake in non-mycorrhizal seedlings of European beech (Fagus sylvatica)[J]. Tree Physiology, 2010, 30(9): 1118-1128.
doi: 10.1093/treephys/tpq050 pmid: 20595637 |
[19] |
Emily E S, David E R. Amino acid uptake by temperate tree species characteristic of low-and high-fertility habitats[J]. Oecologia, 2011, 167(2): 547-557.
doi: 10.1007/s00442-011-2009-x pmid: 21553264 |
[20] | Wang L X, Macko S A. Constrained preferences in nitrogen uptake across plant species and environments[J]. Plant, Cell & Environment, 2011, 34(3): 525-534. |
[21] |
Templer P H, Dawson T E. Nitrogen uptake by four tree species of the Catskill Mountains, New York: Implications for forest N dynamics[J]. Plant and Soil, 2004, 262(1-2): 251-261.
doi: 10.1023/B:PLSO.0000037047.16616.98 |
[22] |
Adrien C F, Sean T B. The uptake of amino acids by microbes and trees in three cold-temperate forests[J]. Ecology, 2005, 86(12): 3345-3353.
doi: 10.1890/04-1460 |
[23] | 勒佳佳, 苏原, 彭庆文, 等. 氮添加对天山高寒草原土壤酶活性和酶化学计量特征的影响[J]. 干旱区研究, 2020, 37(2): 382-389. |
[ Le Jiajia, Su Yuan, Peng Qingwen, et al. Effects of nitrogen addition on soil enzyme activities and ecoenzymatic stoichiometry in alpine grassland of the Tianshan Mountains[J]. Arid Zone Research, 2020, 37(2): 382-389. ] | |
[24] | 王士红, 聂军军, 李秋芝, 等. 施氮量对土壤-棉花系统中氮素吸收利用和氮素去向的影响[J]. 植物营养与肥料学报, 2020, 26(4): 738-745. |
[ Wang Shihong, Nie Junjun, Li Qiuzhi, et al. Effects of nitrogen application rate on nitrogen absorption and utilization, and fate of nitrogen in soil-cotton system[J]. Journal of Plant Nutrition and Fertilizer, 2020, 26(4): 738-745. ] | |
[25] |
Li Y, Sun D, Li D, et al. Effects of warming on ectomycorrhizal colonization and nitrogen nutrition of Picea asperata seedlings grown in two contrasting forest ecosystems[J]. Scientific Reports, 2015, 5: 17546.
doi: 10.1038/srep17546 |
[26] | 罗绪强, 张桂玲, 王世杰, 等. 喀斯特高原黄壤区退化植物群落常见植物叶片氮同位素组成[J]. 地球与环境, 2019, 47(2): 113-120. |
[ Luo Xuqiang, Zhang Guiling, Wang Shijie, et al. Nitrogen isotope ratios in leaves from degraded plant communities in a yellow soil region of the Karst Plateau[J]. Earth and Environment, 2019, 47(2): 113-120. ] | |
[27] | 闵孝君, 马剑英, 臧永新. 水、盐胁迫下长穗柽柳和梭梭碳氮同位素组成的变化特征[J]. 干旱区研究, 2017, 34(5): 1109-1116. |
[ Min Xiaojun, Ma Jianying, Zan Yongxin. Effects of water and salinity stress on carbon and nitrogen isotopic compositions in leaves of Tamarix elongata and Haloxylon ammodendron[J]. Arid Zone Research, 2017, 34(5): 1109-1116. ] |
|