Arid Zone Research ›› 2025, Vol. 42 ›› Issue (11): 2044-2057.doi: 10.13866/j.azr.2025.11.08
• Land and Water Resources • Previous Articles Next Articles
CHEN Kai1(
), ZHANG Yi2, WANG Xing1(
), LIU Xiaojun3, HU Renzheng3, LEI Xueyi3, FAN Qinghua2
Received:2025-05-20
Revised:2025-07-29
Online:2025-11-15
Published:2025-12-13
Contact:
WANG Xing
E-mail:17395125546@163.com;wx08@nxu.edu.cn
CHEN Kai, ZHANG Yi, WANG Xing, LIU Xiaojun, HU Renzheng, LEI Xueyi, FAN Qinghua. Coupled effects of slope and vegetation cover characteristics on hydrodynamic erosion forces and sediment yield processes in the southern Ningxia mountainous area[J].Arid Zone Research, 2025, 42(11): 2044-2057.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Time of runoff production"
| 坡度 | 冲刷强度 /(L·min-1) | 土地利 用类型 | 产流时间/s | 坡度 | 冲刷强度 /(L·min-1) | 土地利 用类型 | 产流时间/s | ||
|---|---|---|---|---|---|---|---|---|---|
| 初始产 流时间 | 结束产 流时间 | 初始产 流时间 | 结束产 流时间 | ||||||
| 10° | 4 | 耕地 | 172 | 163 | 20° | 4 | 耕地 | 88 | 83 |
| 草地 | 218 | 213 | 草地 | 93 | 97 | ||||
| 灌木 | 299 | 296 | 灌木 | 249 | 244 | ||||
| 8 | 耕地 | 75 | 42 | 8 | 耕地 | 51 | 45 | ||
| 草地 | 120 | 103 | 草地 | 65 | 54 | ||||
| 灌木 | 240 | 239 | 灌木 | 159 | 160 | ||||
| 16 | 耕地 | 43 | 37 | 16 | 耕地 | 24 | 22 | ||
| 草地 | 68 | 62 | 草地 | 38 | 33 | ||||
| 灌木 | 133 | 117 | 灌木 | 91 | 85 | ||||
| 15° | 4 | 耕地 | 113 | 98 | 25° | 4 | 耕地 | 56 | 44 |
| 草地 | 127 | 124 | 草地 | 74 | 63 | ||||
| 灌木 | 275 | 273 | 灌木 | 129 | 104 | ||||
| 8 | 耕地 | 63 | 46 | 8 | 耕地 | 35 | 33 | ||
| 草地 | 101 | 95 | 草地 | 44 | 31 | ||||
| 灌木 | 102 | 100 | 灌木 | 147 | 151 | ||||
| 16 | 耕地 | 31 | 27 | 16 | 耕地 | 15 | 12 | ||
| 草地 | 52 | 51 | 草地 | 27 | 24 | ||||
| 灌木 | 106 | 95 | 灌木 | 43 | 41 | ||||
Tab. 2
Effects of scour intensity, land use type, and sample site slope on sand production and related factors"
| 产沙量 | D | V | τ | ω | Ω | t | |
|---|---|---|---|---|---|---|---|
| Intensity | 156.1*** | 240.1*** | 667.7*** | 430.9*** | 285.1*** | 667.7*** | 0.1634 |
| Type | 161.5*** | 71.07*** | 918.3*** | 134.3*** | 65.64*** | 918.2*** | 0.1634 |
| Slope | 158.2*** | 73.82*** | 121.9*** | 1609*** | 420.3*** | 1649*** | 0.0553 |
| Intensity×Type | 7.836*** | 3.141** | 24.87*** | 5.154*** | 11.59*** | 24.89 | 0.1621 |
| Intensity×Slope | 1.205 | 7.723*** | 1.271 | 44.36*** | 5.221*** | 1.266*** | 0.0548 |
| Type×Slope | 9.221*** | 2.661** | 4.773*** | 3.883*** | 4.092*** | 4.761*** | 0.0548 |
| Intensity×Type×Slope | 1.912* | 4.285*** | 2.281*** | 4.486*** | 7.507*** | 2.276** | 0.0541 |
Tab. 3
Stepwise regression analysis between sand production and parameters"
| 冲刷强度/(L·min-1) | 土地利 用类型 | 逐步回归模型 | R2 | |
|---|---|---|---|---|
| 预测 变量 | 模型方程 | |||
| 4 | 耕地 | t | Y=-1.049t+1.916ω-3.676V- 7.291 | 0.796 |
| ω | ||||
| V | ||||
| 草地 | Slope | Y=3.533Slope-5.938V-17.814 | 0.707 | |
| V | ||||
| 灌木 | Slope | Y=6.58Slope-2.131Ω-23.301 | 0.797 | |
| Ω | ||||
| 8 | 耕地 | t | Y=-0.856t+2.139τ-2.962D+ 11.272 | 0.921 |
| τ | ||||
| D | ||||
| 草地 | Slope | Y=8.503Slope-5.281Ω-35.754 | 0.773 | |
| Ω | ||||
| 灌木 | Slope | Y=8.205Slope-3.091Ω-0.92τ- 25.773 | 0.790 | |
| Ω | ||||
| τ | ||||
| 16 | 耕地 | t | Y=-1.589t+2.758τ-2.099V- 5.123 | 0.922 |
| τ | ||||
| V | ||||
| 草地 | Slope | Y=7.079Slope-4.314τ+4.077 | 0.897 | |
| τ | ||||
| 灌木 | Slope | Y=9.916Slope-3.683Ω- 1.069ω+0.507t-30.479 | 0.781 | |
| Ω | ||||
| ω | ||||
| t | ||||
| [1] | Merritt W S, Letcher R A, Jakeman A J, et al. A review of erosion and sediment transport models[J]. Environmental Modelling & Software, 2003, 18(8-9): 761-799. |
| [2] | 史志华, 王玲, 刘前进, 等. 土壤侵蚀: 从综合治理到生态调控[J]. 中国科学院院刊, 2018, 33(2): 198-205. |
| [ Shi Zhihua, Wang Ling, Liu Qianjin, et al. Soil erosion: From comprehensive control to ecological regulation[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 198-205. ] | |
| [3] |
Wei W, Jia F, Yang L, et al. Effects of surficial condition and rainfall intensity on runoff in a loess hilly area, China[J]. Journal of Hydrology, 2014, 513: 115-126.
doi: 10.1016/j.jhydrol.2014.03.022 |
| [4] | 李占斌, 朱冰冰, 李鹏. 土壤侵蚀与水土保持研究进展[J]. 土壤学报, 2008, 45(5): 802-809. |
| [ Li Zhanbin, Zhu Bingbing, Li Peng. Advancement in study on soil erosion and soil and water conservation[J]. Acta Pedologica Sinica, 2008, 45(5): 802-809. ] | |
| [5] | 王伟, 李志能, 李鹏, 等. 连续极端暴雨事件下小流域侵蚀泥沙流失规律研究[J]. 西安理工大学学报, 2020, 36(3): 286-293. |
| [ Wang Wei, Li Zhineng, Li Peng, et al. Study on the law of erosion and sediment loss in continuous extreme rainstorm events in the Loess Plateau[J]. Journal of Xi’an University of Technology, 2020, 36(3): 286-293. ] | |
| [6] | 廖娇娇, 窦艳星, 刘良旭, 等. 黄土高原宁南山区土壤养分空间分布特征[J]. 水土保持研究, 2024, 31(3): 101-107. |
| [ Liao Jiaojiao, Dou Yanxing, Liu Liangxu, et al. Characteristics of spatial distribution of soil nutrients in different land uses in loess hills[J]. Research of Soil and Water Conservation, 2024, 31(3): 101-107. ] | |
| [7] |
Wang L, Wang Y, Saskia K, et al. Effect of soil management on soil erosion on sloping farmland during crop growth stages under a large-scale rainfall simulation experiment[J]. Journal of Arid Land, 2018, 10(6): 921-931.
doi: 10.1007/s40333-018-0016-z |
| [8] | 牛耀彬, 吴旭, 高照良, 等. 降雨和上方来水条件下工程堆积体坡面土壤侵蚀特征[J]. 农业工程学报, 2020, 36(8): 69-77. |
| [ Niu Yaobin, Wu Xu, Gao Zhaoliang, et al. Characteristics of soil erosion on engineering accumulation slope under the rainfall and inflow conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(8): 69-77. ] | |
| [9] | 崔钦凯, 刘俊娥, 陈浩, 等. 草被覆盖、雨强和坡度对黄土坡面径流含沙量的影响[J]. 水土保持学报, 2023, 37(5): 40-47. |
| [ Cui Qinkai, Liu Jun’e, Chen Hao, et al. Influence of grass coverage, rain intensity and slope on sediment concentration of runoff on loess slope[J]. Journal of Soil and Water Conservation, 2023, 37(5):40-47. ] | |
| [10] | Chen B, Long Y, Wei H, et al. A weak-coupling flow-power forecasting method for small hydropower station group[J]. International Journal of Energy Research, 2023, 1: 1214269. |
| [11] | 肖海, 刘刚, 刘普灵. 集中流作用下黄土坡面剥蚀率对侵蚀动力学参数的响应[J]. 农业工程学报, 2016, 32(17): 106-111. |
| [ Xiao Hai, Liu Gang, Liu Puling. Response of detachment rate of loess slope to hydrodynamic characteristics under concentrate flow condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 106-111. ] | |
| [12] | 吴淑芳, 吴普特, 宋维秀, 等. 黄土坡面径流剥离土壤的水动力过程研究[J]. 土壤学报, 2010, 47(2): 223-228. |
| [ Wu Shufang, Wu Pute, Song Weixiu, et al. Hydrodynamic process of soil detachment by surface runoff on loess slope[J]. Acta Pedologica Sinica, 2010, 47(2): 223-228. ] | |
| [13] |
Zhang Q, Wang Z, Wang X, et al. Relationship among runoff, soil erosion, and rill morphology on slopes of overburdened stockpiles under simulated rainfall[J]. Journal of Hydrology, 2024, 633: 130991.
doi: 10.1016/j.jhydrol.2024.130991 |
| [14] | 王龙生, 蔡强国, 蔡崇法, 等. 黄土坡面细沟发育过程中含沙量与水动力学参数的关系[J]. 水土保持学报, 2013, 27(5): 1-6. |
| [ Wang Longsheng, Cai Qiangguo, Cai Chongfa, et al. The relationship between runoff sediment and hydrodynamic parameters of rill evolution process on the loess slope[J]. Journal of Soil and Water Conservation, 2013, 27(5): 1-6. ] | |
| [15] | 曹颖, 张光辉, 唐科明, 等. 地表覆盖对坡面流流速影响的模拟试验[J]. 山地学报, 2011, 29(6): 654-659. |
| [ Cao Ying, Zhang Guanghui, Tang Keming, et al. Experiment on the effect of simulated surface cover on the overland flow velocity[J]. Mountain Research, 2011, 29(6): 654-659. ] | |
| [16] |
Ma Q, Zhang K, Cao Z, et al. Soil detachment by overland flow on steep cropland in the subtropical region of China[J]. Hydrological Processes, 2020, 34(8): 1810-1820.
doi: 10.1002/hyp.v34.8 |
| [17] | 李朋飞, 曹凯, 胡晋飞, 等. 黄土丘陵沟壑区不同雨强下坡面侵蚀空间异质性及其机理[J]. 水土保持研究, 2025, 32(1): 1-12. |
| [ Li Pengfei, Cao Kai, Hu Jinfei, et al. The spatial heterogeneity and mechanisms of hillslope erosion under different rainfall intensities in hilly and gully Loess Plateau[J]. Research of Soil and Water Conservation, 2025, 32(1): 1-12. ] | |
| [18] |
Zhao L, Qin Q, Geng H, et al. Effects of upslope inflow rate, tillage depth, and slope gradients on hillslope erosion processes and hydrodynamic mechanisms[J]. Catena, 2023, 228: 107189.
doi: 10.1016/j.catena.2023.107189 |
| [19] |
Sun L, Zhang B, Yin Z, et al. Assessing the performance of conservation measures for controlling slope runoff and erosion using field scouring experiments[J]. Agricultural Water Management, 2022, 259: 107212.
doi: 10.1016/j.agwat.2021.107212 |
| [20] | 陈浩, 张晓萍, 权伟, 等. 退耕还林前后北洛河上游流域土壤侵蚀时空变化分析[J]. 人民黄河, 2023, 45(6): 111-116. |
| [ Chen Hao, Zhang Xiaoping, Quan Wei, et al. Spatial and temporal changes of soil erosion in the upper reaches of beiluo river watershed before and after the grain for green project[J]. Yellow River, 2023, 45(6): 111-116. ] | |
| [21] |
Lann T, Bao H, Lan H, et al. Hydro-mechanical effects of vegetation on slope stability: A review[J]. Science of the Total Environment, 2024, 926: 171691.
doi: 10.1016/j.scitotenv.2024.171691 |
| [22] | 张霞, 李鹏, 李占斌, 等. 不同植被格局下凸型坡径流流速时空变化及产沙研究[J]. 水土保持学报, 2018, 32(6): 16-21. |
| [ Zhang Xia, Li Peng, Li Zhanbin, et al. Study on temporal and spatial variation of runoff velocity and sediment in the convex hillslope under different vegetation patterns[J]. Journal of Soil and Water Conservation, 2018, 32(6): 16-21. ] | |
| [23] | 王婷婷, 沈海鸥, 梁羽石, 等. 不同坡度条件下连续降雨及汇流对黑土坡面侵蚀的影响[J]. 水土保持学报, 2025, 39(2): 12-20. |
| [ Wang Tingting, Shen Hai’ou, Liang Yushi, et al. Effects of continuous rainfall and runoff under different slope conditions on hillslope soil erosion[J]. Journal of Soil and Water Conservation, 2025, 39(2): 12-20. ] | |
| [24] | 王伟, 苏远逸, 李鹏, 等. 解冻期覆沙黄土坡面能量参数与径流产沙关系[J]. 水土保持学报, 2021, 35(1): 56-64. |
| [ Wang Wei, Su Yuanyi, Li Peng, et al. Relationship between energy parameters of sand-covered loess slope[J]. Journal of Soil and Water Conservation, 2021, 35(1): 56-64. ] | |
| [25] |
金鑫, 刘浩楠, 宋颖, 等. 细沟向浅沟发育过程中沟道几何形态特征变化规律研究[J]. 中国农村水利水电, 2022(12): 8-16.
doi: 10.12396/znsd.220573 |
|
[ Jin Xin, Liu Haonan, Song Ying, et al. Changes of the channel geometric characteristics during the development of rills to shallow ditches[J]. China Rural Water and Hydropower, 2022(12): 8-16. ]
doi: 10.12396/znsd.220573 |
|
| [26] | 张春霞, 董智, 高波, 等. 侵蚀性雨型分类及不同植被类型对棕壤坡面土壤侵蚀的影响[J]. 水土保持研究, 2023, 30(2): 36-41. |
| [ Zhang Chunxia, Dong Zhi, Gao Bo, et al. Effects of erosive rainfall patterns and different vegetation types on soil erosion in slope with brown soil[J]. Research of Soil and Water Conservation, 2023, 30(2): 36-41. ] | |
| [27] |
Meng Z, Dang X, Gao Y, et al. Interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe, Inner Mongolia of China[J]. Journal of Arid Land, 2018, 10(4): 534-547.
doi: 10.1007/s40333-018-0059-1 |
| [28] | 黄少平, 陈俊毅, 肖衡林, 等. 不同坡度植被边坡降雨入渗和径流侵蚀规律的试验研究[J]. 岩土力学, 2023, 44(12): 3435-3447. |
| [ Huang Shaoping, Chen Junyi, Xiao Henglin, et al. Test on rules of rainfall infiltration and runoff erosion on vegetated slopes with different gradients[J]. Rock and Soil Mechanics, 2023, 44(12): 3435-3447. ] | |
| [29] |
Yang S, Gao Z, Li Y, et al. Erosion control of hedgerows under soils affected by disturbed soil accumulation in the slopes of loess plateau, China[J]. Catena, 2019, 181: 104079.
doi: 10.1016/j.catena.2019.104079 |
| [30] |
Sun T, Deng L, Fei K, et al. Runoff characteristics and soil loss mechanism in the weathered granite area under simulated rainfall[J]. Water, 2021, 13(23): 3453.
doi: 10.3390/w13233453 |
| [31] |
Chen X, Liang Z, Zhang Z, et al. Effects of soil and water conservation measures on runoff and sediment yield in red soil slope farmland under natural rainfall[J]. Sustainability, 2020, 12(8): 3417.
doi: 10.3390/su12083417 |
| [32] |
Rasheed M W, Tang J, Sarwar A, et al. Soil moisture measuring techniques and factors affecting the moisture dynamics: A comprehensive review[J]. Sustainability, 2022, 14(18): 11538.
doi: 10.3390/su141811538 |
| [33] | 袁和第, 信忠保, 蒋秋玲, 等. 连续降雨作用下褐土坡面侵蚀及其水动力学特征[J]. 水土保持学报, 2020, 34(4): 14-20. |
| [ Yuan Hedi, Xin Zhongbao, Jiang Qiuling, et al. Slope erosion and its hydrodynamic characteristic of cinnamon soil under continuous rainfall[J]. Journal of Soil and Water Conservation, 2020, 34(4): 14-20. ] | |
| [34] |
Zhang Y, Li R, Jing J. Soil erosion gradient and quantitative attribution in southwest China based on karst development degree[J]. Ecological Indicators, 2022, 144: 109496.
doi: 10.1016/j.ecolind.2022.109496 |
|
||