Arid Zone Research ›› 2025, Vol. 42 ›› Issue (9): 1628-1639.doi: 10.13866/j.azr.2025.09.07
• Plant Ecology • Previous Articles Next Articles
SHANG Shujing1,2,3(
), LIU Danhui1,2(
), ZHOU Yixin1,2,4, WU Jiaju5, LU Ting3, LI Wenjun1,2,4
Received:2025-01-20
Revised:2025-03-21
Online:2025-09-15
Published:2025-09-16
Contact:
LIU Danhui
E-mail:1337593428@qq.com;liudanhui@ms.xjb.ac.cn
SHANG Shujing, LIU Danhui, ZHOU Yixin, WU Jiaju, LU Ting, LI Wenjun. Prediction of the suitable distribution areas of Arnebia euchroma (Boraginaceae) in China under change climate conditions[J].Arid Zone Research, 2025, 42(9): 1628-1639.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
The longitude and latitude of center of mass and migration distance of A. euchroma in China under different climate scenarios in the future"
| 气候情景 | 时期 | 经度 | 纬度 | 质心迁移 距离/km |
|---|---|---|---|---|
| - | 当前 | 91.692°E | 38.489°N | - |
| SSP1-2.6 | 2021—2040年 | 91.509°E | 38.717°N | 29.93 |
| 2041—2060年 | 91.540°E | 38.708°N | 27.70 | |
| SSP2-4.5 | 2021—2040年 | 91.467°E | 38.744°N | 34.44 |
| 2041—2060年 | 91.679°E | 38.648°N | 17.72 | |
| SSP3-7.0 | 2021—2040年 | 91.619°E | 38.670°N | 21.10 |
| 2041—2060年 | 91.632°E | 38.656°N | 19.29 | |
| SSP5-8.5 | 2021—2040年 | 91.271°E | 38.758°N | 47.25 |
| 2041—2060年 | 91.398°E | 38.781°N | 41.31 |
| [1] | Sekar C K, Thapliyal N, Bhojak P, et al. Early signals of climate change impacts on alpine plant diversity in Indian Himalaya[J]. Biodiversity and Conservation, 2024, 34(1): 1-27. |
| [2] | 裴炳. 气候变化对植物多样性和景观设计的影响[J]. 分子植物育种, 2025, 23(1): 294-299. |
| [Pei Bing. The impact of climate change on plant diversity and landscape design[J]. Molecular Plant Breeding, 2025, 23(1): 294-299.] | |
| [3] |
Céline B, Cleo B, Paul L, et al. Impacts of climate change on the future of biodiversity[J]. Ecology Letters, 2012, 15(4): 365-377.
doi: 10.1111/j.1461-0248.2011.01736.x pmid: 22257223 |
| [4] | 赵卫, 王昊, 肖颖, 等. 气候变化对野生生物类自然保护区的影响及其风险[J]. 生态学报, 2023, 43(13): 5270-5280. |
| [Zhao Wei, Wang Hao, Xiao Ying, et al. Effect and risk of climate change on wildlife nature reserves[J]. Acta Ecologica Sinica, 2023, 43(13): 5270-5280.] | |
| [5] | 黄智聪, 舒江平, 严岳鸿, 等. 基于最大熵模型的中国兜兰属植物潜在分布模拟[J]. 热带亚热带植物学报, 2024, 32(1): 17-26. |
| [Huang Zhicong, Shu Jiangping, Yan Yuehong, et al. Simulation of potential distribution of Paphiopedilum in China based on MaxEnt model[J]. Journal of Tropical and Subtropical Botany, 2024, 32(1): 17-26.] | |
| [6] |
王鹏, 金正, 余婷, 等. 预测姜黄属植物在中国当前和未来气候情景下的潜在分布区变化[J]. 草业学报, 2024, 33(10): 14-27.
doi: 10.11686/cyxb2023435 |
|
[Wang Peng, Jin Zheng, Yu Ting, et al. Prediction of the potential distribution of Curcuma in China under current and future climate scenarios[J]. Acta Prataculturae Sinica, 2024, 33(10): 14-27.]
doi: 10.11686/cyxb2023435 |
|
| [7] | Li Y, Li M, Li C, et al. Optimized Maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China[J]. Forests, 2020, 11(3): 302-311. |
| [8] | 杨颖伦. 基于MaxEnt模型的滇藏玉兰适生区分布预测研究[J]. 现代农业科技, 2024(3): 98-102. |
| [Yang Yinglun. Prediction of suitable growing areas distribution of Yulania campbellii based on MaxEnt model[J]. Modern Agricultural Science and Technology, 2024(3): 98-102.] | |
| [9] | 杜志喧, 苏启陶, 周兵, 等. 不同气候变化情景下入侵植物大狼把草在中国的潜在分布[J]. 生态学杂志, 2021, 40(8): 2575-2582. |
| [Du Zhixuan, Su Qitao, Zhou Bing, et al. Potential distribution of invasive species Bidens frondosa under different climate change scenarios in China[J]. Chinese Journal of Ecology, 2021, 40(8): 2575-2582.] | |
| [10] | 陈陆丹, 胡菀, 李单琦, 等. 珍稀濒危植物野生莲的适生分布区预测[J]. 植物科学学报, 2019, 37(6): 731-740. |
| [Chen Ludan, Hu Wan, Li Danqi, et al. Prediction of suitable distribution areas of the endangered plant wild Nelumbo nucifera Gaertn. in China[J]. Plant Science Journal, 2019, 37(6): 731-740.] | |
| [11] | 林鑫, 李成义, 魏小成, 等. 基于MaxEnt模型和ArcGIS的红芪生境适宜性评价[J]. 中成药, 2023, 45(12): 4005-4010. |
| [Lin Xin, Li Chengyi, Wei Xiaocheng, et al. MaxEnt model-ArcGIS-based evaluation of habitat suitability of Hedysari radix[J]. Chinese Traditional Patent Medicine, 2023, 45(12): 4005-4010.] | |
| [12] | 中国科学院中国植物志编辑委员会. 中国植物志第64卷(2)[M]. 北京: 科学出版社, 1989: 43-44. |
| [Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China Volume 64, Volume 2[M]. Beijing: Science Press, 1989: 43-44.] | |
| [13] | Singh H, Chauhan R, Raina R. Population structure, ecological features and associated species of Arnebia euchroma[J]. Journal of Pharmacognosy and Phytochemistry, 2017, 6(4): 2005-2007. |
| [14] | 国家药典委员会. 中华人民共和国药典(2020年版)[M]. 北京: 中国医药科技出版社, 2020: 355. |
| [Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China[M]. 2020 Edition. Beijing: China Medical Science Press, 2020: 355.] | |
| [15] | 国家林业和草原局, 农业农村部. 国家重点保护野生植物名录[EB/OL]. [2021-09-07]. https://www.forestry.gov.cn/c/www/gkml/11057.jhtml. |
| [National Forestry and Grassland Administration, Ministry of Agriculture and Rural Affairs. National Key Protected Wild Plants of China[EB/OL]. [2021-09-07]. https://www.forestry.gov.cn/c/www/gkml/11057.jhtml.] | |
| [16] | 徐海燕. 新疆软紫草属资源及其药材品质评价的研究[D]. 北京: 北京中医药大学, 2021. |
| [Xu Haiyan. Study on the Quality Evaluation of Arnebia Resources and Its Medicinal Materials in Xinjiang[D]. Beijing: Beijing University of Chinese Medicine, 2021.] | |
| [17] | Zhao J, Wang Y, Ding W, et al. Microsatellite marker-based analysis of the genetic diversity and population structure of three Arnebiae radix in western China[J]. Journal of Genetic Engineering and Biotechnology, 2024, 22(2): 100379. |
| [18] | 付宇, 安慧君, 高明龙, 等. 基于气候变化背景的东北岩高兰潜在分布区预测[J]. 西北林学院学报, 2023, 38(5): 49-56. |
| [Fu Yu, An Huijun, Gao Minglong, et al. Prediction of potential distribution area of Empetrum nigrum var. japonicum based on climate change background[J]. Journal of Northwest Forestry University, 2023, 38(5): 49-56.] | |
| [19] | 景丞, 姜彤, 苏布达, 等. 共享社会经济路径在土地利用、能源与碳排放研究的应用[J]. 大气科学学报, 2022, 45(3): 397-413. |
| [Jing Cheng, Jiang Tong, Su Buda, et al. Multiple application of shared socioeconomic pathways in land use, energy and carbon emission research[J]. Transactions of Atmospheric Sciences, 2022, 45(3): 397-413.] | |
| [20] |
杨倩, 袁园, 苏旭, 等. 气候变化背景下糙果紫堇在中国适宜分布区的预测[J]. 植物研究, 2024, 44(1): 17-26.
doi: 10.7525/j.issn.1673-5102.2024.01.004 |
|
[Yang Qian, Yuan Yuan, Su Xu, et al. Prediction of suitable distribution area of Corydalis trachycarpa (Papaveraceae) in China under climate change[J]. Bulletin of Botanical Research, 2024, 44(1): 17-26.]
doi: 10.7525/j.issn.1673-5102.2024.01.004 |
|
| [21] |
吴茹茹, 刘美珍, 谷仙, 等. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458.
doi: 10.17521/cjpe.2023.0218 |
|
[Wu Ruru, Liu Meizhen, Gu Xian, et al. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea[J]. Chinese Journal of Plant Ecology, 2024, 48(4): 445-458.]
doi: 10.17521/cjpe.2023.0218 |
|
| [22] | 陈程浩, 龙主多杰, 陆徐伟, 等. 基于优化MaxEnt模型的中国紫堇属植物生境适宜性研究[J]. 生态学报, 2023, 43(24): 10345-10362. |
| [Chen Chenghao, Longzhuduojie, Lu Xuwei, et al. Habitat suitability of Corydalis based on the optimized MaxEnt model in China[J]. Acta Ecologica Sinica, 2023, 43(24): 10345-10362.] | |
| [23] | 叶雨, 樊丛照, 张际昭, 等. 基于MaxEnt和GIS的新疆紫草产地生态适宜性分析[J]. 中国现代中药, 2022, 24(5): 770-775. |
| [Ye Yu, Fan Congzhao, Zhang Jizhao, et al. Ecological suitability of Arnebia euchroma producing area based on MaxEnt and GIS[J]. Modern Chinese Medicine, 2022, 24(5): 770-775.] | |
| [24] | 陈舒豪, 郭新安. 基于MaxEnt的小蓬草在中国的潜在适生区预测[J]. 湖北林业科技, 2024, 53(2): 35-40. |
| [Chen Shuhao, Guo Xin'an. Prediction of potential suitable areas of Conyza canadensis using MaxEnt model[J]. Hubei Forestry Science and Technology, 2024, 53(2): 35-40.] | |
| [25] | 丁德永, 段洪, 李咪者, 等. 木荷适生区分析及未来气候下在中国潜在适生区预测[J]. 中国野生植物资源, 2024, 43(3): 114-123. |
| [Ding Deyong, Duan Hong, Li Mizhe, et al. Analysis of suitable areas of Schima superba and prediction of potential suitable areas in China under future climate[J]. Chinese Wild Plant Resources, 2024, 43(3): 114-123.] | |
| [26] | 姜生秀, 胡静, 王方琳, 等. 基于MaxEnt模型的中国白刺属植物种群动态分析[J]. 中国野生植物资源, 2024, 43(11): 122-128. |
| [Jiang Shengxiu, Hu Jing, Wang Fanglin, et al. Population dynamics analysis of Chinese Nitraria based on MaxEnt model[J]. Chinese Wild Plant Resources, 2024, 43(11): 122-128.] | |
| [27] | 王颖. 四川野生杜鹃花属植物资源的调查与评价[D]. 北京: 北京林业大学, 2008. |
| [Wang Ying. Investigation and Evaluation of Wild Rhododendron Resources in Sichuan Province[D]. Beijing: Beijing Forestry University, 2008.] | |
| [28] | 倪健. 全球变化研究中的生物气候指标[J]. 第四纪研究, 2017, 37(3): 431-441. |
| [Ni Jian. An intruduction to bioclimatic factors[J]. Quaternary Sciences, 2017, 37(3): 431-441.] | |
| [29] | 马生军, 耿阳, 马露, 等. 药用紫草研究进展[J]. 中国现代中药, 2021, 23(1): 177-184. |
| [Ma Shengjun, Geng Yang, Ma Lu, et al. Advances in studies on medicinal Arnebiae radix[J]. Modern Chinese Medicine, 2021, 23(1): 177-184.] | |
| [30] | 张际昭, 邱远金, 赵亚琴, 等. 新疆紫草根际环境与药材药效成分含量相关性研究[J]. 中国中药杂志, 2023, 48(22): 6030-6038. |
|
[Zhang Jizhao, Qiu Yuanjin, Zhao Yaqin, et al. Correlation between rhizosphere environment and content of medicinal components of Arnebia euchroma[J]. China Journal of Chinese Materia Medica, 2023, 48(22): 6030-6038.]
doi: 10.19540/j.cnki.cjcmm.20230725.101 pmid: 38114209 |
|
| [31] | 钱雪, 陈斌, 史晓芬, 等. 不同种类紫草对比研究[J]. 中国野生植物资源, 2020, 39(3): 68-71. |
| [Qian Xue, Chen Bin, Shi Xiaofen, et al. Comparative study of different kinds of gromwell root[J]. Chinese Wild Plant Resources, 2020, 39(3): 68-71.] | |
| [32] | 丁文欢, 王东东, 王延蛟, 等. 新疆3种软紫草资源现状调查与分析[J]. 时珍国医国药, 2023, 34(1): 162-165. |
| [Ding Wenhuan, Wang Dongdong, Wang Yanjiao, et al. Investigation and analysis of three species of Arnebia resource situation in Xinjiang[J]. Journal of Li-shizhen Traditional Chinese Medicine, 2023, 34(1): 162-165.] | |
| [33] | 李东宾, 魏晶晶, 许志斌, 等. 基于MaxEnt模型的华顶杜鹃潜在适生区预测和分析[J]. 浙江林业科技, 2024, 44(3): 1-10. |
| [Li Dongbin, Wei Jingjing, Xu Zhibin, et al. Potential distribution of Rhododendron huadingense by MaxEnt model[J]. Journal of Zhejiang Forestry Science and Technology, 2024, 44(3): 1-10.] | |
| [34] | 陈思明, 邓钟, 张红月, 等. 气候变化对中国沿海红树林潜在分布格局的影响[J]. 湿地科学与管理, 2024, 20(3): 32-37, 44. |
| [Chen Siming, Deng Zhong, Zhang Hongyue, et al. Impact of climate change on potential distribution of mangrove along the Chinese coast[J]. Wetland Science & Management, 2024, 20(3): 32-37, 44.] | |
| [35] |
史柠瑞, 朱珠, 王艳莉. 基于MaxEnt模型对2种青兰属植物在未来气候变化下潜在分布的预测研究[J]. 中国农学通报, 2023, 39(32): 115-123.
doi: 10.11924/j.issn.1000-6850.casb2022-0874 |
| [Shi Ningrui, Zhu Zhu, Wang Yanli. Potential distribution prediction of two species of Dracocephalum L. under future climate change based on MaxEnt model[J]. Chinese Agricultural Science Bulletin, 2023, 39(32): 115-123.] | |
| [36] | 叶雨. 生态因子对新疆紫草生物学特性及品质的影响[D]. 乌鲁木齐: 新疆农业大学, 2022. |
| [Ye Yu. Effects of Ecological Factors on Biological Characteristics and Quality of Arnebia euchroma[D]. Urumqi: Xinjiang Agricultural University, 2022.] | |
| [37] |
黄瑞, 戴胜云, 吴东雪, 等. 新疆紫草野生品与栽培品的质量比较研究[J]. 药物分析杂志, 2024, 44(5): 783-795.
doi: 10.16155/j.0254-1793.2024.05.06 |
| [Huang Rui, Dai Shengyun, Wu Dongxue, et al. Comparative study on the quality of wild and cultivated Arnebiae Radix[J]. Chinese Journal of Pharmaceutical Analysis, 2024, 44(5): 783-795.] | |
| [38] |
陈松清, 东红芳, 岳怡锋, 等. 不同气候情景下中国沙棘的地理分布及动态变化预测[J]. 干旱区研究, 2024, 41(9): 1560-1571.
doi: 10.13866/j.azr.2024.09.12 |
|
[Chen Songqing, Dong Hongfang, Yue Yifeng, et al. Geographical distribution and dynamic change prediction of Hippophae rhamnoides subsp. sinensis under different climate scenarios[J]. Arid Zone Research, 2024, 41(9): 1560-1571.]
doi: 10.13866/j.azr.2024.09.12 |
|
| [39] | 曹福祥, 徐庆军, 曹受金, 等. 全球变暖对物种分布的影响研究进展[J]. 中南林业科技大学学报, 2008, 28(6): 86-89. |
| [Cao Fuxiang, Xu Qingjun, Cao Shoujin, et al. Advances of global warming impact on species distribution[J]. Journal of Central South University of Forestry & Technology, 2008, 28(6): 86-89.] |
| [1] | YAN Yingcun, SUN Shujiao, YU Di, GAO Guisheng. Impact and trend estimation of climate change on vegetation greenness in the Qaidam Basin [J]. Arid Zone Research, 2025, 42(7): 1257-1268. |
| [2] | ZOU Bin, ZOU Shan, YANG Yuhui. Dynamic changes and driving factors of surface water body in Xinjiang from 1990 to 2023 [J]. Arid Zone Research, 2025, 42(1): 40-50. |
| [3] | QU Yuyang, WEN Tiantian, LIU Jiamin, YAN Ping. Potential geographic distribution of the three species of Cuscuta in China under climate scenarios [J]. Arid Zone Research, 2025, 42(1): 97-107. |
| [4] | CHEN Songqing, DONG Hongfang, YUE Yifeng, HAO Yuanyuan, LIU Xin, CAO Xianyu, MA Jun. Geographical distribution and dynamic change prediction of Hippophae rhamnoides subsp. sinensis under different climate scenarios [J]. Arid Zone Research, 2024, 41(9): 1560-1571. |
| [5] | LYU Zhuangzhuang, QIAO Qingqing, DONG Sunyi, WANG Dong. Paleoclimatic evolution and driving mechanisms in arid areas of inland Asia during the Middle Miocene Climatic Optimum in the context of global climate warming [J]. Arid Zone Research, 2024, 41(8): 1309-1322. |
| [6] | ZHOU Jie, WANG Xuhu, DU Weibo, ZHOU Xiaolei, YANG Jie, ZAHNG Xiaowei. Prediction of potential distribution area of Picea schrenkiana under the background of climate change [J]. Arid Zone Research, 2024, 41(7): 1167-1176. |
| [7] | LIANG Shuanghe, NIU Zuirong, JIA Ling. Analysis of runoff changes and attribution in the main stream of Zuli River in the past 65 years [J]. Arid Zone Research, 2024, 41(6): 928-939. |
| [8] | TANG Kexin, GUO Jianbin, HE Liang, CHEN Lin, WAN Long. Characteristics of the spatial and temporal evolution of Gross Primary Productivity and its influencing factors in China’s drylands [J]. Arid Zone Research, 2024, 41(6): 964-973. |
| [9] | SU Canxia, CHU Wenwen, Bahatibieke PIELIZHATI, JIANG Xiaoheng, CHEN Yanqiu, HUANG Wenpu, MA Chi, CHU Hongjun. Potential distribution changes of Castor fiber birulai under climate changes in the upper reaches of the Ulungur River,Xinjiang [J]. Arid Zone Research, 2024, 41(3): 509-520. |
| [10] | ZHANG Jiaqi, LIU Zhao, HAN Zhongqing, WANG Lixia, ZHANG Jinxia, YUE Jiayin, GUAN Zilong. Trend change and prediction of blue-green water in the Jinghe River Basin under climate change [J]. Arid Zone Research, 2024, 41(12): 2045-2055. |
| [11] | ZHANG Qian, CAO Guangchao, ZHANG Lele, ZHAO Meiliang. Spatiotemporal changes in vegetation greenness on the southern slopes of the Qilian Mountains and their responses to climate change and human activities [J]. Arid Zone Research, 2024, 41(12): 2143-2153. |
| [12] | YANG Fei, ZHANG Wentao, ZHANG Feimin, WANG Chenghai. Climate characteristics and variation in the Qilian Mountains from 1961 to 2022 [J]. Arid Zone Research, 2024, 41(10): 1627-1638. |
| [13] | ZHANG Yin, SUN Congjian, LIU Geng, CHAO Jinlong, GENG Tianwei. Response of NDSI in the Tarim River Basin mountainous areas to climate change over the past 20 years [J]. Arid Zone Research, 2024, 41(10): 1639-1648. |
| [14] | CHENG Qian, QI Yue, LIU Mingchun, ZHANG Peng, DING Wenkui, LI Xingyu, REN Liwen, YANG Hua. Characteristics of ecology and water resource changes in the Shiyang River Basin under the background of climate change and human activities [J]. Arid Zone Research, 2024, 41(10): 1672-1684. |
| [15] | FAN Yuke, REN Ju, WANG Runlong, ZHOU Dongdong, PAN Zikai, ZHANG Xiaowei, ZHOU Xiaolei. Prediction of potential suitable distribution area of Pinus bungeana in China under the background of climate change [J]. Arid Zone Research, 2024, 41(10): 1719-1730. |
|
||