Arid Zone Research ›› 2025, Vol. 42 ›› Issue (9): 1612-1627.doi: 10.13866/j.azr.2025.09.06
• Land and Water Resources • Previous Articles Next Articles
ZHAO Lina1(
), LI Yuda1, GOU Qianqian1, WANG Guohua1,2(
), QU Jianjun3
Received:2025-01-28
Revised:2025-03-20
Online:2025-09-15
Published:2025-09-16
Contact:
WANG Guohua
E-mail:nana3773@126.com;gimi123@126.com
ZHAO Lina, LI Yuda, GOU Qianqian, WANG Guohua, QU Jianjun. Cumulative effects of time on soil microbial community and multifunctionality in a desert oasis expansion area: A case study of the Zhangye oasis[J].Arid Zone Research, 2025, 42(9): 1612-1627.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 3
Soil multi-functionality, physicochemical properties and enzyme activity in farmland and shrubland of different ages"
| 农田 | 林地 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 5 a | 10 a | 20 a | 30 a | 5 a | 10 a | 20 a | 30 a | |||
| 养分 | 有机碳/(g·kg-1) | 4.48±0.61 | 5.15±0.82 | 3.72±0.54 | 4.64±0.84 | 1.51±0.27b | 1.57±0.26b | 2.48±0.51ab | 3.73±1.01a | |
| 全氮/(g·kg-1) | 1.00±0.19 | 0.98±0.18 | 1.10±0.14 | 0.95±0.10 | 0.18±0.04b | 0.17±0.03b | 0.23±0.04ab | 0.32±0.08a | ||
| 全磷/(g·kg-1) | 0.47±0.03b | 0.73±0.020a | 0.71±0.08a | 0.73±0.01a | 0.53±0.01b | 0.52±0.01b | 0.58±0.01a | 0.61±0.03a | ||
| 酸碱度 | 酸碱度 | 7.04±0.12ab | 7.24±0.03a | 6.86±0.11b | 6.85±0.09b | 8.38±0.19a | 8.02±0.14ab | 7.87±0.07b | 8.27±0.20ab | |
| 盐分 | 土壤电导率 /(μS·cm -1) | 68.65±1.88b | 69.33±2.28b | 259.28±71.26a | 328.63±59.94a | 506.67±79.82a | 286.03±40.40b | 441.48±80.67ab | 460.42±58.31ab | |
| 水分 | 土壤含水量/% | 6.02±0.14b | 8.34±0.55a | 6.44±0.38b | 6.12±0.27b | 2.78±0.34b | 3.81±0.15a | 4.38±0.17a | 2.80±0.09b | |
| 酶活性 | β-葡萄糖苷酶 /(μg·g-1·h-1) | 11.42±4.41 | 13.97±4.75 | 29.08±18.36 | 25.74±10.27 | 58.43±9.21 | 51.89±8.30 | 72.53±5.71 | 57.75±4.00 | |
| 脲酶/(μg·g-1·h-1) | 0.90±0.20 | 0.67±0.15 | 1.39±0.29 | 1.26±0.35 | 7.13±0.45b | 7.55±0.41b | 8.05±0.67ab | 9.53±0.55a | ||
| 碱性磷酸酶 /(μg·g-1·h-1) | 54.04±0.70b | 53.79±1.69b | 56.84±2.14ab | 61.06±2.15a | 0.10±0.01b | 0.11±0.01ab | 0.16±0.03a | 0.15±0.01ab | ||
| 生态系统多功能性 | 0.45±0.11b | 0.86±0.07a | 0.45±0.15b | 0.40±0.07b | 0.37±0.05c | 0.38±0.06c | 0.55±0.04b | 0.69±0.05a | ||
Tab. 4
Relative abundance of dominant bacteria and fungi in farmland and woodland at phylum level of different ages"
| OTU | 隶属 | 农田相对丰度/% | 林地相对丰度/% | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 a | 10 a | 20 a | 30 a | 隶属 | 5 a | 10 a | 20 a | 30 a | |||||
| 细菌 | 1 | Proteobacteria | 67.72±15.77 | 69.05±10.33 | 75.12±10.82 | 88.16±6.23 | Proteobacteria | 37.52±3.01 | 36.20±1.98 | 31.97±1.83 | 34.02±1.58 | ||
| 2 | Bacteroidetes | 10.06±3.75 | 8.40±1.97 | 16.07±6.32 | 4.78±3.54 | Actinobacteria | 18.86±2.60ab | 23.30±2.98a | 14.74±2.07b | 19.86±1.07ab | |||
| 3 | Actinobacteria | 5.04±2.23 | 10.05±5.80 | 4.27±2.32 | 1.77±0.93 | Bacteroidetes | 14.02±1.87a | 11.21±1.55a | 13.02±1.54a | 4.73±1.62b | |||
| 4 | Acidobacteria | 4.67±4.67 | 3.68±3.65 | 0.12±0.05 | 0.03±0.01 | Gemmatimo- nadetes | 6.15±1.27c | 7.33±1.91bc | 15.00±1.64a | 10.39±1.10b | |||
| 5 | Firmicutes | 7.08±7.07 | 0.57±0.37 | 0.30±0.11 | 0.10±0.05 | Acidobacteria | 7.04±1.71b | 7.20±1.04b | 9.34±1.37ab | 12.87±1.76a | |||
| 6 | Gemmatimon- adetes | 2.16±2.16 | 3.60±3.60 | 0.03±0.01 | 0.01±0.01 | Chloroflexi | 5.33±1.69b | 5.56±1.66b | 5.42±1.55b | 11.51±1.58a | |||
| 7 | Chloroflexi | 1.68±1.49 | 2.39±2.34 | 0.25±0.10 | 0.18±0.16 | Firmicutes | 3.13±1.59a | 1.82±1.36b | 1.17±1.20b | 2.02±1.19b | |||
| 真菌 | 1 | Ascomycota | 59.77±4.63 | 61.87±5.85 | 66.5±6.09 | 56.32±9.10 | Ascomycota | 74.23±3.90ab | 75.83±3.49a | 56.28±5.41c | 63.96±2.29bc | ||
| 2 | Mortierellom- ycota | 14.75±2.79 | 19.01±7.60 | 19.68±4.57 | 13.42±4.45 | Basidiomycota | 6.87±1.77 | 7.40±1.91 | 6.36±2.02 | 6.17±2.09 | |||
| 3 | Basidiomycota | 7.63±3.00b | 4.08±1.27b | 2.53±0.65b | 24.49±8.85a | Mortierello- mycota | 1.22±1.35 | 1.98±1.18 | 1.70±1.49 | 1.22±1.32 | |||
| 4 | Glomero- mycota | 0.88±0.59ab | 2.07±0.30a | 2.15±0.77a | 0.03±0.02b | Chytridiomycota | 1.74±1.36 | 1.42±1.10 | 1.14±1.06 | 1.27±1.07 | |||
| 5 | Chytridio- mycota | 0.15±0.05b | 0.55±0.35ab | 0.97±0.36a | 0.12±0.12b | Olpidiomycota | 1.02±1.01b | 1.01±1.01b | 1.05±1.03b | 1.23±1.11a | |||
| 6 | Blastocladio- mycota | 0.34±0.29 | 0.01±0.01 | 0.23±0.12 | 0.04±0.04 | Mucoromycota | 1.09±1.04a | 1.08±1.02a | 1.06±1.03ab | 0.01±1.00b | |||
| 7 | Olpidiomycota | 0.14±0.08 | 0.25±0.19 | 0.19±0.09 | 0.01±0.01 | Glomeromycota | 1.06±1.03 | 1.09±1.03 | 1.05±1.02 | 1.02±1.01 | |||
Tab. 5
Changes in network structure of bacterial and fungal communities in farmland and shrubland"
| 农田 | 林地 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 参数 | 5 a | 10 a | 20 a | 30 a | 5 a | 10 a | 20 a | 30 a | ||
| 细菌 | 点数 | 48 | 44 | 44 | 46 | 32 | 42 | 31 | 35 | |
| 边数 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
| 平均度数 | 3.33 | 4.55 | 4.55 | 4.35 | 5.25 | 5.96 | 5.51 | 4.95 | ||
| 平均路径长度 | 1.00 | 1.08 | 1.37 | 1.12 | 2.63 | 2.98 | 2.61↓ | 2.14↓ | ||
| 直径 | 6.00 | 12.03 | 12.05 | 12.07 | 16.74 | 14.76↓ | 9.52↓ | 9.26↓ | ||
| 密度 | 0.07 | 0.11 | 0.11 | 0.10 | 0.20 | 0.12 | 0.17 | 0.22↑ | ||
| 聚类系数 | 1.00 | 0.80 | 0.66 | 0.98 | 0.56 | 0.67 | 0.59 | 0.52 | ||
| 模块化 | 0.86 | 0.78 | 0.74 | 0.82 | 0.32 | 0.42 | 0.36 | 0.47↑ | ||
| 复杂性 | 0.67 | 0.53 | 0.33 | 0.69 | 0.28 | 0.47↑ | 0.51↑ | 0.67↑ | ||
| 真菌 | 点数 | 45 | 45 | 45 | 44 | 42 | 46 | 44 | 48 | |
| 边数 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
| 平均度数 | 4.04 | 4.00 | 4.26 | 4.44 | 4.76 | 4.35 | 4.55 | 4.18 | ||
| 平均路径长度 | 1.03 | 0.88 | 1.01↑ | 1.71↑ | 2.88 | 3.36 | 3.46 | 3.76 | ||
| 直径 | 9.21 | 6.01 | 12.11↑ | 10.03↑ | 17.79 | 26.19 | 17.64 | 25.36 | ||
| 密度 | 0.09 | 0.10 | 0.09 | 0.09 | 0.12 | 0.10 | 0.11 | 0.09 | ||
| 聚类系数 | 1.00 | 0.96 | 0.66 | 0.53 | 0.45 | 0.43 | 0.61 | 0.41 | ||
| 模块化 | 0.69 | 0.96 | 0.66↓ | 0.53↓ | 0.40 | 0.53 | 0.41 | 0.55 | ||
| 复杂性 | 0.51 | 0.65 | 0.48↓ | 0.37↓ | 0.37 | 0.52 | 0.50 | 0.48 | ||
Tab. 6
Principal component analysis of ecosystems multi-functionality influencing factors in farmland"
| 生态系统 | 微生物特征 | 指标 | Ⅰ | Ⅱ |
|---|---|---|---|---|
| 农田生态系统多功能性 | 功能类群 | 解磷菌 | -0.58 | -0.19 |
| 病原体 | -0.93 | -0.09 | ||
| 腐生菌 | 0.21 | 0.84 | ||
| 真菌多样性 | ACE指数 | 0.87 | -0.23 | |
| Chao1指数 | 0.82 | -0.21 | ||
| Shannon指数 | 0.75 | 0.39 | ||
| 真菌网络复杂性 | 网络复杂性 | 0.76 | -0.38 | |
| 特征值 | 3.81 | 1.14 | ||
| 贡献率/% | 54.37 | 16.30 | ||
| 累积贡献率/% | 54.37 | 70.68 | ||
Tab. 7
Principal component analysis of ecosystems multi-functionality influencing factors in shrubland"
| 生态系统 | 微生物特征 | 指标 | Ⅰ | Ⅱ | Ⅲ | Ⅳ |
|---|---|---|---|---|---|---|
| 林地生态系统多功能性 | 功能群落 | 需氧菌 | -0.70 | 0.15 | 0.63 | 0.28 |
| 固氮菌 | -0.66 | 0.16 | 0.64 | 0.34 | ||
| 共生体 | 0.71 | -0.19 | 0.24 | 0.02 | ||
| 病原体 | 0.37 | -0.26 | 0.40 | -0.43 | ||
| 腐生体 | -0.48 | 0.53 | -0.45 | 0.20 | ||
| 细菌多样性 | ACE指数 | 0.52 | 0.81 | 0.20 | -0.17 | |
| Chao1指数 | 0.52 | 0.80 | 0.21 | -0.19 | ||
| Simpson指数 | 0.66 | -0.11 | -0.17 | 0.61 | ||
| Shannon指数 | 0.85 | 0.23 | -0.04 | 0.42 | ||
| 细菌网络复杂性 | 网络复杂性 | 0.73 | -0.37 | 0.37 | 0.13 | |
| 特征值 | 4.03 | 1.93 | 1.49 | 1.04 | ||
| 贡献率/% | 40.37 | 19.33 | 14.89 | 10.48 | ||
| 累积贡献率/% | 40.37 | 59.70 | 74.59 | 85.06 | ||
| [1] | Xue J, Gui D, Lei J, et al. Oasification: An unable evasive process in fighting against desertification for the sustainable development of arid and semiarid regions of China[J]. Catena, 2019, 179: 197-209. |
| [2] | Li F Y, Feng Q, Liu J L, et al. Effects of the conversion of native vegetation to farmlands on soil microarthropod biodiversity and ecosystem functioning in a desert oasis[J]. Ecosystems, 2013, 16(7): 1364-1377. |
| [3] |
苏永中, 张珂, 刘婷娜, 等. 河西边缘绿洲荒漠沙地开垦后土壤性状演变及土壤碳积累研究[J]. 中国农业科学, 2017, 50(9): 1646-1654.
doi: 10.3864/j.issn.0578-1752.2017.09.010 |
|
[Su Yongzhong, Zhang Ke, Liu Tingna, et al. Changes in soil properties and accumulation of soil carbon after cultivation of desert sandy land in a marginal oasis in Hexi Corridor region, Northwest China[J]. Scientia Agricultura Sinica, 2017, 50(9): 1646-1654.]
doi: 10.3864/j.issn.0578-1752.2017.09.010 |
|
| [4] | Manning P, Plas F, Soliveres S, et al. Redefining ecosystem multifunctionality[J]. Nature Ecology & Evolution, 2018, 2(3): 427-436. |
| [5] | Garland G, Banerjee S, Edlinger A, et al. A closer look at the functions behind ecosystem multifunctionality: A review[J]. Journal of Ecology, 2020, 109(108): 1-14. |
| [6] | 王燕, 赵哈林, 潘成臣. 土地利用方式对盐渍化农田土壤理化特性的影响[J]. 干旱区资源与环境, 2014, 28(2): 149-155. |
| [Wang Yan, Zhao Halin, Pan Chengchen. Effect of land use change on soil physical and chemical properties of salinization farmland[J]. Journal of Arid Land Resources and Environment, 2014, 28(2): 149-155.] | |
| [7] |
王宇昕, 赵文智, 刘鹄. 生态系统突变及其在寒旱区生态系统管理中的应用展望[J]. 应用生态学报, 2024, 35(7): 1997-2005.
doi: 10.13287/j.1001-9332.202407.002 |
| [Wang Yuxin, Zhao Wenzhi, Liu Hu. Ecosystem regime shifts and its application prospects to ecosystem management in cold and arid regions Chinese[J]. Journal of Applied Ecology, 2024, 35(7): 1997-2005.] | |
| [8] | Luo J P, Liao G C, Banerjee S, et al. Long-term organic fertilization promotes the resilience of soil multifunctionality driven by bacterial communities[J]. Soil Biology and Biochemistry, 2023, 177(55): 108922. |
| [9] | Wang G H, Seth M M, Morrien E, et al. Changes in microbial community and network structure precede shrub degradation in a desert ecosystem[J]. Catena, 2024, 242(52): 108106. |
| [10] | Li J, Baquerizo D M, Wang J T, et al. Fungal richness contributes to multifunctionality in boreal forest soil[J]. Soil Biology and Biochemistry, 2019, 136(51): 107526. |
| [11] | 张凤华, 潘旭东, 李玉义. 新疆玛河流域绿洲农田开垦后土壤环境演变分析[J]. 中国农业科学, 2006, 39(2): 331-336. |
| [Zhang Fenghua, Pan Xudong, Li Yuyi. Research on successional regulation of soil environment after reclamation in the Manas River Valley[J]. Scientia Agricultura Sinica, 2006, 39(2): 331-336.] | |
| [12] | 许文强, 罗格平, 陈曦, 等. 天山北坡绿洲土壤有机碳和养分时空变异特征[J]. 地理研究, 2006, 25(6): 1013-1021. |
| [Xu Wenqiang, Luo Geping, Chen Xi, et al. Spatio-temporal variability of soil organic C and nutrients in the oasis of the northern slope of the Tianshan Mountains[J]. Geographical Research, 2006, 25(6): 1013-1021.] | |
| [13] |
苏永中, 杨荣, 刘文杰, 等. 基于土壤条件的边缘绿洲典型灌区灌溉需水研究[J]. 中国农业科学, 2014, 47(6): 1128-1139.
doi: 10.3864/j.issn.0578-1752.2014.06.009 |
| [Su Yongzhong, Yang Rong, Liu Wenjie, et al. Irrigation water requirement based on soil conditions in a typical irrigation district in a marginal oasis[J]. Scientia Agricultura Sinica, 2014, 47(6): 1128-1139.] | |
| [14] | 郑立伟, 赵阳阳, 王一冰, 等. 不同连作年限甜瓜种植土壤性质和微生物多样性[J]. 微生物学通报, 2022, 49(1): 101-114. |
| [Zheng Liwei, Zhao Yangyang, Wang Yibing, et al. Soil properties and microbial diversity in the muskmelon fields after continuous cropping for different years[J]. Microbiology China, 2022, 49(1): 101-114.] | |
| [15] | 宋以玲, 于建, 陈士更, 等. 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响[J]. 水土保持学报, 2018, 32(1): 352-360. |
| [Song Yiling, Yu Jian, Chen Shigeng, et al. Effects of reduced chemical fertilizer with application of bio-organic fertilizer on rape growth, microorganism and enzymes activities in soil[J]. Journal of Soil and Water Conservation, 2018, 32(1): 352-360.] | |
| [16] | Qiu L P, Zhang Q, Zhu H S, et al. Erosion reduces soil microbial diversity, network complexity and multifunctionality[J]. The ISME Journal, 2021, 15(8): 2474-2489. |
| [17] |
Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131 |
| [18] |
Edgar R C, Hass B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200.
doi: 10.1093/bioinformatics/btr381 pmid: 21700674 |
| [19] | Tan H, Barret M, Mooij M, et al. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils[J]. Biology and Fertility of Soils, 2013, 49(6): 661-672. |
| [20] |
许亚东, 王涛, 李慧, 等. 黄土丘陵区人工柠条林土壤酶活性与养分变化特征[J]. 草地学报, 2018, 26(2): 363-370.
doi: 10.11733/j.issn.1007-0435.2018.02.013 |
|
[Xu Yadong, Wang Tao, Li Hui, et al. Variation characteristies of soil enzyme activities and nutrient of the artificial Caragana korshinskii plantation in Loess Hilly Region[J]. Acta Agrestia Sinica, 2018, 26(2): 363-370.]
doi: 10.11733/j.issn.1007-0435.2018.02.013 |
|
| [21] | Manuel D B, Guerra C A, Concha C D, et al. The proportion of soil-borne pathogens increases with warming at the global scale[J]. Nature Climate Change, 2020, 10(6): 550-554. |
| [22] | Byrnes J E K, Gamfeldt F, Isbell F, et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions[J]. Methods in Ecology and Evolution, 2014, 5(2): 111-124. |
| [23] | Gou Q Q, Gao M, Wang G H, et al. Multi-functional characteristics of artificial forests of Caragana korshinskii Kom with different plantation ages in the hilly and sandy area of Northwest Shanxi, China[J]. Land Degradation & Development, 2023, 34(14): 4195-4207. |
| [24] | Zhai C C, Han L L, Xiong C, et al. Soil microbial diversity and network complexity drive the ecosystem multifunctionality of temperate grasslands under changing precipitation[J]. Science of the Total Environment, 2024, 906(55): 167217. |
| [25] | 李兵, 王浩, 李增扬, 等. 基于复杂网络的软件复杂性度量研究[J]. 电子学报, 2006, 34(1): 2371-2375. |
| [Li Bing, Wang Hao, Li Zhengyang, et al. Software complexity metrics based on complex networks[J]. Acta Electronica Sinica, 2006, 34(1): 2371-2375.] | |
| [26] | 汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用[M]. 北京: 清华大学出版社, 2006. |
| [Wang Xiaofan, Li Xiang, Chen Guanrong. Complex Network Theory and Its Applications[M]. Beijing: Tsinghua University Press, 2006.] | |
| [27] | 王克平, 洪安东, 吴国栋. 基于知识图谱的海洋测绘发展趋势研究[J]. 天津科技, 2022, 49(1): 20-24. |
| [Wang Keping, Hong Andong, Wu Guodong. Research on development trend of marine surveying and charting based on knowledge graph[J]. Tianjin Science & Technology, 2022, 49(1): 20-24.] | |
| [28] | Maestre F T, Andrea P, Matthew A, et al. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern[J]. Journal of Ecology, 2012, 100(2): 317-330. |
| [29] | Su Y Z, Yang R, Liu W J, et al. Evolution of soil structure and fertility after conversion of native sandy desert soil to irrigated cropland in arid region, China[J]. Soil Science, 2010, 175(5): 246-254. |
| [30] | Dietrich P, Ebeling A, Meyer S T, et al. Plant diversity and community age stabilize ecosystem multifunctionality[J]. Global Change Biology, 2024, 30(3): 17225. |
| [31] | 闫欢, 高芬, 王梦亮, 等. 根腐病对黄芪根围土壤酶活性影响的动态分析[J]. 山西农业科学, 2019, 47(5): 900-909. |
| [Yan Huan, Gao Fen, Wang Mengliang, et al. Dynamic analysis of effect of root rot disease on soil enzyme activity in root zone of Aastragalus membranaceus[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(5): 900-909.] | |
| [32] | Schmidt R, Mitchell J, Scow K. Cover cropping and no-till increase diversity and symbiotroph: Saprotroph ratios of soil fungal communities[J]. Soil Biology and Biochemistry, 2019, 129(51): 99-109. |
| [33] | Yang H L, Cheng L, Che L M, et al. Nutrients addition decreases soil fungal diversity and alters fungal guilds and co-occurrence networks in a semi-arid grassland in northern China[J]. Science of The Total Environment, 2024, 926(55): 172100. |
| [34] | Chang D, Song Y, Liang H, et al. Planting Chinese milk vetch with phosphate-solubilizing bacteria inoculation enhances phosphorus turnover by altering the structure of the phoD-harboring bacteria community[J]. European Journal of Soil Biology, 2024, 123(32): 103678. |
| [35] |
苏永中, 赵哈林, 张铜会, 等. 科尔沁沙地不同年代小叶锦鸡儿人工林植物群落特征及其土壤特性[J]. 植物生态学报, 2004, 28(1): 93-100.
doi: 10.17521/cjpe.2004.0014 |
| [Su Yongzhong, Zhao Halin, Zhang Tonghui, et al. Characteristics of plant community and soil properties in the plantation chronosequence of Caragana microphylla in horqin sandy land[J]. Acta Phytoecologica Sinica, 2004, 28(1): 93-100.] | |
| [36] |
孙倩, 吴宏亮, 陈阜, 等. 不同作物轮作对谷田土壤酶活性和土壤细菌群落的影响[J]. 生态环境学报, 2020, 29(12): 2385-2393.
doi: 10.16258/j.cnki.1674-5906.2020.012.009 |
| [Sun Qian, Wu Hongliang, Chen Fu, et al. Effects of soil enzyme activity and bacterial community under different crop rotations[J]. Ecology and Environmental Sciences, 2020, 29(12): 2385-2393.] | |
| [37] | Banerjee S, Walder F, Büchi L, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots[J]. The ISME Journal, 2019, 13(7): 1722-1736. |
| [38] | 何志斌, 赵文智, 刘鹄, 等. 祁连山青海云杉林斑表层土壤有机碳特征及其影响因素[J]. 生态学报, 2006, 8(26): 2572-2577. |
| [He Zhibin, Zhao Wenzhi, Liu Hu, et al. Characteristic of Picea crassifolia forest soil organic carbon and relationship with environment factors in the Qilian Mountain[J]. Actaecologica Sinica, 2006, 8(26): 2572-2577.] | |
| [39] | Yang Y, Qiu K Y, Xie Y Z, et al. Geographical, climatic, and soil factors control the altitudinal pattern of rhizosphere microbial diversity and its driving effect on root zone soil multifunctionality in mountain ecosystems[J]. Science of the Total Environment, 2023, 904(24): 166932. |
| [40] | Yang Y, Dou Y, Wang B, et al. Deciphering factors driving soil microbial life-history strategies in restored grasslands[J]. Imeta, 2023, 2(1): 66-74. |
| [1] | ZHU Zhaohua, ZHAI Yixiao, LI Xinrong, Miao Yingxiang, MA Tong, LI Shanjia. Community composition and functionalities of endophytic microorganisms in Haloxylon ammodendron seeds [J]. Arid Zone Research, 2025, 42(9): 1640-1649. |
| [2] | GUO Qiang, WANG Yuqin, SONG Meiling. Effects of meteorological factors on the litter decomposition of the fungal endophyte Stipa purpurea symbiont in alpine grassland [J]. Arid Zone Research, 2025, 42(7): 1269-1278. |
| [3] | LI Haochen, HU Guanglu, WANG Tao, CHEN Ning, LI Jianan, FAN Yalun. Soil moisture under different irrigation patterns in sandy loam farmland in the middle reaches of the Heihe River dynamic simulation [J]. Arid Zone Research, 2025, 42(7): 1333-1347. |
| [4] | CHENG Yanlin, WANG Jiayuan, GAO Guanglei, DING Guodong, ZHANG Ying, ZHAO Peishan, ZHU Binbin. Structure and functional group characteristics of generalized and specialized species of soil and root-associated fungi in Pinus sylvestris var. mongolica forests of the Hulunbuir Desert [J]. Arid Zone Research, 2025, 42(6): 1055-1066. |
| [5] | HUANG Weihao, LAN Shan, ZHANG Yiwei, ZHANG Hengrui, CAO Wenxin, ZHAO Xinyue, GUO Yaxin, CHEN Pengpeng, LI Shaoshuai, WU Wenliang, WANG Qinggang. Evaluation of farmers’ perspective on the effectiveness of high-standard farmland construction in the Ili River Basin [J]. Arid Zone Research, 2025, 42(4): 766-774. |
| [6] | WANG Yu, ZHAO Shanchao, LI Liu, YUAN Yuan, GU Xiaoliang. Soil multifunctionality and its influences across various ages of Picea schrenkiana plantation [J]. Arid Zone Research, 2025, 42(3): 445-455. |
| [7] | JIANG Kangwei, WANG Yafei, LIU Chentong, LI Hong, LYU Cheng, Tursunnay REYIMU, ZHANG Qingqing. Responses of soil microbial communities to grazing and their relationship with environmental factors [J]. Arid Zone Research, 2025, 42(3): 467-479. |
| [8] | ZHANG Lei, ZHOU Yuming, DONG Jiemou, LI Xiang, LIU Shidong, XU Liping. Spatiotemporal differentiation of nonagricultural and nongrain farmland in China and its management strategies [J]. Arid Zone Research, 2025, 42(2): 372-383. |
| [9] | GAO Haiyan, ZHANG Shengnan, YANG Zhiguo, ZHANG Lei, HUANG Haiguang, YAN Deren. Structure and function of soil fungal community in Pinus tabuliformis sand-fixing forests in Horqin Sandy Land [J]. Arid Zone Research, 2025, 42(1): 118-126. |
| [10] | HUANG Kunlin, WU Guozhou, XU Weixin, LI Lidong, WANG Haimei, LI Hang, LI Zixiang, SI Jingke, LIU Hongbin, WU Chengna. Dynamic snowmelt process and its influencing factors in the eastern farmland region of Hulun Buir [J]. Arid Zone Research, 2024, 41(9): 1514-1526. |
| [11] | LEI Feiya, LI Xiaoshuang, TAO Ye, YIN Benfeng, RONG Xiaoying, ZHANG Jing, LU Yongxing, GUO Xing, ZHOU Xiaobing, ZHANG Yuanming. Characterization of soil multifunctionality and its determining factors under moss crust cover in the arid regions of Northwest China [J]. Arid Zone Research, 2024, 41(5): 812-820. |
| [12] | SANG Yiming, XIN Liangjie. Changes of farmland use intensity in the YLN region from 2000 to 2020 [J]. Arid Zone Research, 2024, 41(5): 843-855. |
| [13] | DU Huadong, LIU Yan, BI Yinli, CHE Xuxi, BAI Mengtong. Characteristics of soil properties and fungal community changes in different microgeomorphic units in an arid gravel desert area [J]. Arid Zone Research, 2024, 41(3): 421-431. |
| [14] | LI Na, XIN Huinan, LAI Ning, LI Yongfu, LYU Caixia, GENG Qinglong, DUAN Jingjing, CHEN Shuhuang. Effects of different land-use methods on the organic carbon composition and soil microbial biomass carbon of farmland soil [J]. Arid Zone Research, 2024, 41(10): 1789-1796. |
| [15] | JI Mingxin, FENG Tianjiao, XIAO Huijie, XIN Zhiming, LI Junran, WANG Dong. Effects of different farmland shelterbelts on soil water and nutrient storage in the Hetao Irrigation District [J]. Arid Zone Research, 2023, 40(8): 1268-1279. |
|
||