Arid Zone Research ›› 2025, Vol. 42 ›› Issue (5): 810-819.doi: 10.13866/j.azr.2025.05.04
• Land and Water Resources • Previous Articles Next Articles
WU Shaoxiong1(
), MA Dengke2,3, CHEN Kun1, JI Guiping1, HE Zhibin2(
)
Received:2024-11-21
Revised:2025-02-08
Online:2025-05-15
Published:2025-10-22
Contact:
HE Zhibin
E-mail:wsx991215@163.com;hzbmail@lzb.ac.cn
WU Shaoxiong, MA Dengke, CHEN Kun, JI Guiping, HE Zhibin. Study on region-scale soil moisture measurements using mobile cosmic-ray neutron technology[J].Arid Zone Research, 2025, 42(5): 810-819.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Correction and calibration for neutron intensity of 14 plots in the study area"
| 样地 序号 | 经度 | 纬度 | P /hPa | RH /(g·m-3) | RC /GV | I /cpm | /(g·cm-3) | Nraw /cpm | N /cpm | N0 /cpm |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 106°26′E | 38°01′N | 882.98 | 5.61 | 9.61 | 219 | 1.50 | 800 | 328 | 381 |
| 2 | 106°27′E | 37°58′N | 875.53 | 5.18 | 9.67 | 221 | 1.50 | 876 | 337 | 386 |
| 3 | 106°26′E | 37°57′N | 877.12 | 6.92 | 9.67 | 221 | 1.51 | 876 | 343 | 388 |
| 4 | 106°25′E | 37°58′N | 883.02 | 9.28 | 9.67 | 218 | 1.51 | 736 | 309 | 353 |
| 5 | 106°24′E | 37°58′N | 883.02 | 8.94 | 9.67 | 219 | 1.54 | 844 | 353 | 389 |
| 6 | 106°26′E | 37°59′N | 881.06 | 8.26 | 9.64 | 219 | 1.52 | 784 | 322 | 365 |
| 7 | 106°26′E | 37°58′N | 880.91 | 8.20 | 9.66 | 219 | 1.51 | 802 | 328 | 369 |
| 8 | 106°29′E | 38°03′N | 877.82 | 8.01 | 9.61 | 219 | 1.53 | 848 | 339 | 377 |
| 9 | 106°29′E | 37°59′N | 876.64 | 9.89 | 9.66 | 219 | 1.51 | 768 | 308 | 373 |
| 10 | 106°32′E | 38°02′N | 866.75 | 9.03 | 9.64 | 219 | 1.45 | 816 | 302 | 373 |
| 11 | 106°33′E | 38°03′N | 864.92 | 9.08 | 9.61 | 219 | 1.50 | 880 | 322 | 369 |
| 12 | 106°24′E | 38°01′N | 881.44 | 9.12 | 9.64 | 219 | 1.53 | 816 | 337 | 371 |
| 13 | 106°29′E | 38°01′N | 875.44 | 8.85 | 9.63 | 220 | 1.51 | 854 | 336 | 378 |
| 14 | 106°28′E | 37°55′N | 868.69 | 9.01 | 9.70 | 220 | 1.47 | 858 | 321 | 382 |
| 平均值 | 106°28′E | 37°59′N | 876.81 | 8.24 | 9.65 | 219 | 1.51 | 826 | 327 | 375 |
| [1] | Baatz R, Bogena H R, Franssen H H, et al. Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods[J]. Journal of Hydrology, 2014, 516: 231-244. |
| [2] | Brunetti G J, Šimůnek H, Bogena R, et al. On the information content of cosmic-ray neutron data in the inverse estimation of soil hydraulic properties[J]. Vadose Zone Journal, 2019, 18(1): 1-24. |
| [3] |
蒋一飞, 李晓鹏, 宣可凡, 等. 宇宙射线中子法在农田土壤水分监测中的适用性[J]. 应用生态学报, 2022, 33(4): 909-914.
doi: 10.13287/j.1001-9332.202204.020 |
|
[Jiang Yifei, Li Xiaopeng, Xuan Kefan, et al. Applicability of cosmic-ray neutron sensing for monitoring soil moisture in farmland[J]. Chinese Journal of Applied Ecology, 2022, 33(4): 909-914.]
doi: 10.13287/j.1001-9332.202204.020 |
|
| [4] | Vather T, Everson C, Mengistu M, et al. Cosmic ray neutrons provide an innovative technique for estimating intermediate scale soil moisture[J]. South African Journal of Science, 2019, 114(7/8): 79-87. |
| [5] | Bindlish R, Barros A P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation[J]. Remote Sensing of Environment, 2001, 76(1): 130-137. |
| [6] | Nguyen H H, Kim H, Choi M. Evaluation of the soil water content using cosmic-ray neutron probe in a heterogeneous monsoon climate-dominated region[J]. Advances in Water Resources, 2017, 108(10): 125-138. |
| [7] |
吴绍雄, 张勇勇, 赵文智, 等. 基于COSMIC模型的宇宙射线中子反演荒漠-绿洲区土壤水分[J]. 应用生态学报, 2023, 34(9): 2445-2452.
doi: 10.13287/j.1001-9332.202309.023 |
|
[Wu Shaoxiong, Zhang Yongyong, Zhao Wenzhi, et al. Retrieving soil moisture using cosmic-ray neutron technology based on COSMIC model in the desert-oasis region[J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2445-2452.]
doi: 10.13287/j.1001-9332.202309.023 |
|
| [8] | Zreda M, Shuttleworth W J, Zeng X, et al. COSMOS: The cosmic-ray soil moisture observing system[J]. Hydrology and Earth System Sciences, 2012, 16(11): 4079-4099. |
| [9] | Köhli M, Schrön M, Zreda M, et al. Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons[J]. Water Resources Research, 2015, 51(7): 5772-5790. |
| [10] | Rosolem R, Shuttleworth W J, Zreda M, et al. The effect of atmospheric water vapor on neutron count in the cosmic-ray soil moisture observing system[J]. Journal of Hydrometeorology, 2013, 14(5): 1659-1671. |
| [11] | Hawdon A, McJannet D, Wallace J. Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia[J]. Water Resources Research, 2014, 50(6): 5029-5043. |
| [12] | Desilets D, Zreda M, Ferré T P A. Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays[J]. Water Resources Research, 2010, 46(11): 008726. |
| [13] | Franz T E, Zreda M, Rosolem R, et al. A universal calibration function for determination of soil moisture with cosmic-ray neutrons[J]. Hydrology and Earth System Sciences, 2013, 17(2): 453-460. |
| [14] | Shuttleworth J, Rosolem R, Zreda M, et al. The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation[J]. Hydrology and Earth System Sciences, 2013, 17(8): 3205-3217. |
| [15] | Han X, Rui J, Xin L, et al. Soil moisture estimation using cosmic-ray soil moisture sensing at heterogeneous farmland[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1659-1663. |
| [16] | Evans J G, Ward H C, Blake J R, et al. Soil water content in southern England derived from a cosmic-ray soil moisture observing system-cosmos-UK[J]. Hydrological Processes, 2016, 30(26): 4987-4999. |
| [17] | 赵原, 李晓鹏, 纪景纯, 等. 宇宙射线中子法在土壤水分监测研究中的应用进展[J]. 生态与农村环境学报, 2019, 35(5): 545-553. |
| [Zhao Yuan, Li Xiaopeng, Ji Jingchun, et al. Advances in soil moisture monitoring using cosmic ray neutron probe method[J]. Journal of Ecology and Rural Environment, 2019, 35(5): 545-553.] | |
| [18] | 武强, 贺开利, 罗孳孳, 等. 宇宙射线中子法在复杂下垫面土壤水分测量中的应用[J]. 中国农业气象, 2020, 41(1): 34-42. |
| [Wu Qiang, He Kaili, Luo Zizi, et al. Application of cosmic-ray neutron method in soil moisture measurement on complex underlying surface[J]. Chinese Journal of Agrometeorology, 2020, 41(1): 34-42.] | |
| [19] | 石耀辉, 王海龙, 朱永超, 等. 宇宙射线中子法土壤水分监测在不同生态系统雨季的适用性[J]. 气象科技, 2024, 52(1): 1-9. |
| [Shi Yaohui, Wang Hailong, Zhu Yongchao, et al. Suitability of cosmic ray neutron probe for soil moistrue in different ecosystems during rainy season[J]. Meteorological Science and Technology, 2024, 52(1): 1-9.] | |
| [20] | Foolad F, Franz T E, Wang T J, et al. Feasibility analysis of using inverse modeling for estimating field-scale evapotranspiration in maize and soybean fields from soil water content monitoring networks[J]. Hydrology and Earth System Sciences, 2017, 21(2): 1263-1277. |
| [21] | Schattan P, Baroni G, Oswald S E, et al. Continuous monitoring of snowpack dynamics in alpine terrain by aboveground neutron sensing[J]. Water Resources Research, 2017, 53(5): 3615-3634. |
| [22] | Bogena H R, Herrmann F, Jakobi J, et al. Monitoring of snowpack dynamics with cosmic-ray neutron probes: A comparison of four conversion methods[J]. Frontiers in Water, 2020, 2(8): 19. |
| [23] | Montzka C, Bogena H R, Zreda M, et al. Validation of spaceborne and modelled surface soil moisture products with cosmic-ray neutron probes[J]. Remote Sensing, 2017, 9(2): 103. |
| [24] | Mwangi S, Zeng Y, Montzka C, et al. Assimilation of cosmic-ray neutron counts for the estimation of soil ice content on the eastern Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(3): 031529. |
| [25] | 赵纯, 袁国富, 刘晓, 等. 宇宙射线土壤水分观测方法在黄土高原草地植被的应用[J]. 土壤学报, 2015, 52(6): 1438-1444. |
| [Zhao Chun, Yuan Guofu, Liu Xiao, et al. Application of cosmic-ray method to soil moisture measurement of grassland in the Loess Plateau[J]. Acta Pedologica Sinica, 2015, 52(6): 1438-1444.] | |
| [26] | 谈幸燕, 张兰慧, 贺缠生, 等. 宇宙射线中子法在西北农牧交错带土壤水分测量中的适用性研究[J]. 中国科学:地球科学, 2020, 50(11): 1596-1610. |
| [Tan Xingyan, Zhang Lanhui, He Chansheng, et al. Applicability of cosmic-ray neutron sensor for measuring soil moisture at the agricultural-pastoral ecotone in Northwest China[J]. Science China Earth Sciences, 2020, 50(11): 1596-1610.] | |
| [27] |
彭书艳, 赵龙, 李婷婷, 等. 基于宇宙射线观测的喀斯特槽谷区典型流域土壤水分反演研究[J]. 遥感技术与应用, 2021, 36(5): 997-1008.
doi: 10.11873/j.issn.1004-0323.2021.5.0997 |
| [Peng Shuyan, Zhao Long, Li Tingting, et al. Retrieval of cosmic-ray-based soil moisture over a typical karst watershed[J]. Remote Sensing Technology and Application, 2021, 36(5): 997-1008.] | |
| [28] | Zhu X, Cao R, Shao M, et al. Footprint radius of a cosmic-ray neutron probe for measuring soil-water content and its spatiotemporal variability in an alpine meadow ecosystem[J]. Journal of Hydrology, 2018, 558: 1-8. |
| [29] | Wang Q M, Fan J, Wang S, et al. Application and accuracy of cosmic-ray neutron probes in three soil textures on the Loess Plateau, China[J]. Journal of Hydrology, 2019, 569(2): 449-461. |
| [30] | Altdorff D, Oswald S E, Zacharias S, et al. Toward large-scale soil moisture monitoring using rail-based cosmic ray neutron sensing[J]. Water Resources Research, 2023, 59(3): 033514. |
| [31] | 王兴东. 宁夏灵武白芨滩国家级自然保护区综合科学考察报告[M]. 北京: 中国林业出版社, 2018. |
| [Wang Xingdong. Comprehensive Scientific Pilot Report on Baijitan National Nature Reserve in Lingwu, Ningxia[M]. Beijing: China Forestry Publishing House, 2018.] | |
| [32] | 余琦殷, 宋超. 宁夏灵武白芨滩自然保护区植被覆盖变化地形效应[J]. 生态科学, 2022, 41(2): 91-98. |
| [Yu Qiyin, Song Chao. The response of dynamic change in vegetation coverage to topography in Baijitan National Nature Reserve in Lingwu, Ningxia[J]. Ecological Science, 2022, 41(2): 91-98.] | |
| [33] | 宋超, 余琦殷, 王瑞霞, 等. 宁夏灵武白芨滩国家级自然保护区防风固沙功能辐射效益[J]. 北京林业大学学报, 2022, 44(7): 78-89. |
| [Song Chao, Yu Qiyin, Wang Ruixia, et al. Radiation effects of windbreak and sand fixation function in Baijitan National Nature Reserve, Lingwu, Ningxia of northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(7): 78-89.] | |
| [34] | Dong J, Ochsner T E. Soil texture often exerts a stronger influence than precipitation on mesoscale soil moisture patterns[J]. Water Resources Research, 2018, 54(3): 2199-2211. |
| [35] | Zhang Y Y, Zhao W Z, Li X B, et al. Contribution of soil macropores to water infiltration across different land use types in a desert-oasis ecoregion[J]. Land Degradation & Development, 2021, 32(4): 1751-1760. |
| [36] | Desilets D, Zreda M, Prabu T. Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude[J]. Earth and Planetary Science Letters, 2006, 246(3): 265-276. |
| [37] | Franz T E, Zreda M, Ferre T P A, et al. Measurements depth of the cosmic ray soil moisture probe affected by hydrogen from various sources[J]. Water Resources Research, 2012, 48(8): 011871. |
| [38] | Schrön M, Köhli M, Scheiffele L, et al. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity[J]. Hydrology and Earth System Sciences, 2017, 21(10): 5009-5030. |
| [39] | Baroni G, Scheiffele L M, Schrönc M, et al. Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing[J]. Journal of Hydrology, 2018, 564: 873-887. |
| [40] | Jakobi J, Huisman J A, Vereecken H, et al. Cosmic ray neutron sensing for simultaneous soil water content and biomass quantification in drought conditions[J]. Water Resources Research, 2018, 54(10): 7383-7402. |
| [41] | Franz T E, Zreda M, Rosolem R, et al. Ecosystem-scale measurements of biomass water using cosmic ray neutrons[J]. Geophysical Research Letters, 2013, 40(15): 3929-3933. |
| [42] | Coopersmith E J, Cosh M H, Daughtry C S T. Field-scale moisture estimates using cosmos sensors: A validation study with temporary networks and leaf-area-indices[J]. Journal of Hydrology, 2014, 519: 637-643. |
| [43] | Wu S X, Zhang Y Y, Kang W R. Employing NDVI as vegetation correction variable to improve soil moisture measurements of mobile cosmic-ray neutron sensor near the Qilian Mountains[J]. Geoderma, 2024, 441: 116764. |
| [44] | McJannet D, Franz T, Hawdon A, et al. Field testing of the universal calibration function for determination of soil moisture with cosmic-ray neutrons[J]. Water Resources Research, 2014, 50(6): 5235-5248. |
| [45] | Baroni G, Oswald S E. A scaling approach for the assessment of biomass changes and rainfall interception using cosmic-ray neutron sensing[J]. Journal of Hydrology, 2015, 525: 264-276. |
| [46] | Heidbüchel I, Güntner A, Blume T. Use of cosmic-ray neutron sensors for soil moisture monitoring in forests[J]. Hydrology and Earth System Sciences, 2016, 20(3): 1269-1288. |
| [47] | Schrön M, Rosolem R, Köhli M, et al. Cosmic-ray neutron rover surveys of field soil moisture and the influence of roads[J]. Water Resources Research, 2018, 54(9): 6441-6459. |
| [1] | LIU Quanyu, LI Congjuan, LI Guizhen. Effects of addition of the bentonite on the physicochemical properties and vegetation growth of wind-eroded sandy soil [J]. Arid Zone Research, 2025, 42(3): 456-466. |
| [2] | SONG Haiqing, HUANG Yan, SUN Xiaolong. Applicability evaluation of five soil texture datasets to surface soil moisture simulations based on IMLDAS [J]. Arid Zone Research, 2025, 42(10): 1813-1827. |
| [3] | WAN Jiayi, SHI Jiayu, ZHANG Huamin, LI Lanhui, DING Mingjun. Soil moisture variation characteristics of alpine meadow with different cover types in the Three-River Source Region [J]. Arid Zone Research, 2024, 41(8): 1343-1353. |
| [4] | YANG Zhuqing, WANG Lei, ZHANG Xue, SHEN Jianxiang, ZHANG Yijing, LI Xinyu, ZHANG Bo, NIU Jinshuai. Seed germination and seedling growth of typical sand-fixing plants in response to soil moisture [J]. Arid Zone Research, 2024, 41(5): 830-842. |
| [5] | HU Guanglu, LIU Peng, LI Jia’nan, TAO Hu, ZHOU Chengqian. Characteristics of soil moisture dynamics and influencing factors of three landscape types at the oasis edge in the middle reaches of the Heihe River [J]. Arid Zone Research, 2024, 41(4): 550-565. |
| [6] | ZHANG Hua, YA Haiting, XU Cungang. Remote sensing retrieval of soil moisture and estimation of vegetation water requirements in the north and south mountains of Lanzhou City [J]. Arid Zone Research, 2024, 41(4): 566-580. |
| [7] | SONG Dacheng, MA Quanlin, LIU Shiquan, WEI Linyuan, WU Hao, DUAN Xiaofeng, GUO Shujiang. Species diversity in Minqin clay sand barrier-artificial Haloxylon ammodendron plantations and the characteristics of soil moisture changes [J]. Arid Zone Research, 2024, 41(4): 618-628. |
| [8] | WANG Bo, ZHANG Jianjun, LAI Zongrui, ZHAO Jiongchang, HU Yawei, YANG Zhou, LI Yang, WEI Zhaoyang. Effect of soil moisture content on the accuracy of root configuration detection by ground penetrating radar [J]. Arid Zone Research, 2024, 41(3): 456-466. |
| [9] | LI Jiannan, SHI Haibin, MIAO Qingfeng, SHAN Dan, RONG Hao, WEN Yaqin. Effect of environmental factors on the transpiration water consumption of various artificial arbor stands [J]. Arid Zone Research, 2023, 40(8): 1312-1321. |
| [10] | JIJI Jiamen, CHENG Yiben, CHEN Linglong, WAN Pengxiang, ZHANG Yihui, YANG Wenbin, BAI Xuying, WANG Tao. Dynamic changes in soil moisture and its response to rainfall in Pinus sylvestris var. mongolica plantation in Horqin Sandy Land [J]. Arid Zone Research, 2023, 40(5): 756-766. |
| [11] | XUE Zhixuan, ZHANG Li, WANG Xinjun, LI Yongkang, ZHANG Guanhong, LI Peiyao. Downscaling analysis of SMAP soil moisture products in Gurbantunggut Desert [J]. Arid Zone Research, 2023, 40(4): 583-593. |
| [12] | SHI Jianzhou, LIU Xiande, TIAN Qing, YU Pengtao, WANG Yanhui. Rainfall response of soil water content on a slope of Larix principis-rupprechtii plantation in the semi-arid Liupan Mountains [J]. Arid Zone Research, 2023, 40(4): 594-604. |
| [13] | YANG Shuangqi, SONG Naiping, WANG Xing, CHEN Xiaoying, CHANG Daoqin. Spatiotemporal characteristics of sierozem and aeolian soil moisture levels in a desert steppe [J]. Arid Zone Research, 2023, 40(10): 1625-1636. |
| [14] | YUAN Limin,YANG Zhiguo,XUE Bo,GAO Haiyan,HAN Zhaorigetu. Heterogeneity of soil moisture of blowouts in HulunBuir grassland [J]. Arid Zone Research, 2022, 39(5): 1598-1606. |
| [15] | QIANG Yuquan,XU Xianying,ZHANG Jinchun,LIU Hujun,GUO Shujiang,DUAN Xiaofeng. Characteristics of stem sap flow of Haloxylon ammodendron and its response to environmental factors in Qingtu Lake, Minqin [J]. Arid Zone Research, 2022, 39(4): 1143-1154. |
|
||