Arid Zone Research ›› 2025, Vol. 42 ›› Issue (5): 788-799.doi: 10.13866/j.azr.2025.05.02
• Weather and Climate • Previous Articles Next Articles
SHAO Junjie(
), TAO Tonglian, LI Zhizhong(
)
Received:2025-03-04
Revised:2025-04-09
Online:2025-05-15
Published:2025-10-22
Contact:
LI Zhizhong
E-mail:17306911966@163.com;lizz@fjnu.edu.cn
SHAO Junjie, TAO Tonglian, LI Zhizhong. Late Holocene climate change recorded by grain size and trace elements in sediments from the southern margin of the Gurbantunggut Desert[J].Arid Zone Research, 2025, 42(5): 788-799.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Age and related parameter values of the study profiles OSL dating samples"
| 样号 | 埋深/m | 铀/(μg·g-1) | 钍/(μg·g-1) | 钾/(μg·g-1) | 环境剂量率/(Gy·ka-1) | 等效剂量/Gy | 年龄/ka |
|---|---|---|---|---|---|---|---|
| MT-01 | 0.6 | 1.43±0.02 | 5.17±0.07 | 2.04±0.02 | 2.78±0.12 | 0.41±0.03 | 0.15±0.01 |
| MT-02 | 1.5 | 1.57±0.02 | 4.64±0.03 | 2.01±0.02 | 2.72±0.12 | 5.75±0.17 | 2.11±0.11 |
| MT-03 | 3.6 | 1.33±0.01 | 4.71±0.02 | 1.92±0.02 | 2.55±0.11 | 5.95±0.17 | 2.33±0.12 |
| WT-01 | 1.0 | 1.78±0.04 | 5.98±0.06 | 1.95±0.02 | 2.83±0.12 | 6.63±0.13 | 2.34±0.11 |
| WT-02 | 1.5 | 1.88±0.02 | 8.26±0.07 | 1.82±0.01 | 2.87±0.12 | 5.99±0.14 | 2.09±0.10 |
| WT-03 | 2.0 | 1.58±0.02 | 5.78±0.04 | 1.96±0.01 | 2.76±0.12 | 7.13±0.23 | 2.59±0.14 |
| WT-04 | 2.5 | 1.46±0.02 | 6.71±0.03 | 1.91±0.02 | 2.73±0.11 | 11.26±0.34 | 4.13±0.21 |
| WT-05 | 3.0 | 1.23±0.02 | 5.19±0.03 | 1.90±0.01 | 2.56±0.11 | 10.68±0.27 | 4.18±0.21 |
| WT-06 | 3.5 | 1.32±0.02 | 8.25±0.07 | 1.89±0.02 | 2.76±0.12 | 9.68±0.40 | 3.51±0.21 |
| WT-07 | 4.0 | 1.30±0.01 | 5.59±0.04 | 2.03±0.02 | 2.70±0.12 | 12.74±0.44 | 4.71±0.26 |
Tab. 2
Trace element abundance of aeolian sand in MT profile /(mg·kg-1)"
| 元素 | As | Ba | Co | Cu | Cr | La | Mn | Ni | Nb |
|---|---|---|---|---|---|---|---|---|---|
| 平均值 | 13.95 | 591.95 | 7.76 | 32.03 | 42.76 | 21.92 | 558.95 | 22.57 | 17.76 |
| 变化范围 | 13~14 | 460~695 | 6~9 | 21~36 | 36~49 | 18~26 | 531~611 | 12~26 | 15~22 |
| 标准差 | 0.23 | 43.82 | 0.72 | 2.59 | 3.08 | 2.07 | 18.71 | 2.24 | 1.23 |
| UCC值 | 1.50 | 550.00 | 10.00 | 25.00 | 35.00 | 30.00 | 600.00 | 20.00 | 25.00 |
| 元素 | Pb | Rb | Th | Y | Sr | Zn | V | Ti | Zr |
| 平均值 | 46.27 | 94.46 | 24.59 | 29.65 | 269.00 | 49.14 | 76.97 | 2950.78 | 211.86 |
| 变化范围 | 33~53 | 89~99 | 17~28 | 28~31 | 252~283 | 44~55 | 75~79 | 2799~3119 | 269~174 |
| 标准差 | 2.89 | 2.10 | 1.59 | 0.59 | 6.75 | 2.69 | 0.90 | 75.72 | 17.78 |
| UCC值 | 20.00 | 112.00 | 10.70 | 22.00 | 350.00 | 71.00 | 60.00 | 3000.00 | 190.00 |
Tab. 3
Trace element abundance of aeolian sand in WT section /(mg·kg-1)"
| 元素 | As | Ba | Co | Cu | Cr | La | Mn | Ni | Nb |
|---|---|---|---|---|---|---|---|---|---|
| 平均值 | 13.98 | 550.30 | 6.00 | 24.34 | 44.09 | 20.89 | 560.11 | 24.02 | 18.30 |
| 变化范围 | 13~14 | 503~643 | 4~8 | 18~38 | 38~53 | 18~24 | 503~645 | 22~26 | 17~20 |
| 标准差 | 0.15 | 32.97 | 0.68 | 3.18 | 3.26 | 1.48 | 24.05 | 1.09 | 0.70 |
| UCC值 | 1.50 | 550.00 | 10.00 | 25.00 | 35.00 | 30.00 | 600.00 | 20.00 | 25.00 |
| 元素 | Pb | Rb | Th | Y | Sr | Zn | V | Ti | Zr |
| 平均值 | 49.11 | 97.39 | 25.16 | 30.31 | 268.93 | 43.43 | 76.91 | 2991.07 | 272.52 |
| 变化范围 | 44~53 | 91~106 | 22~27 | 29~32 | 256~308 | 37~50 | 73~82 | 2632~3478 | 186~346 |
| 标准差 | 1.97 | 2.62 | 1.01 | 0.67 | 10.29 | 2.97 | 1.43 | 137.24 | 38.46 |
| UCC值 | 20.00 | 112.00 | 10.70 | 22.00 | 350.00 | 71.00 | 60.00 | 3000.00 | 190.00 |
| [1] | Kellogg A C, Griffin W D. Aerobiology and the global transport of desert dust[J]. Trends in Ecology & Evolution, 2006, 21(11): 638-644. |
| [2] | 陈瑶, 鹿化煜, 吴会娟, 等. 全球沙漠变化的气候影响[J]. 中国科学:地球科学, 2023, 53(5): 1057-1066. |
| [Chen Yao, Lu Huayu, Wu Huijuan, et al. Global desert variation under climatic impact during 1982-2020[J]. Scientia Sinica (Terrae), 2023, 53(5): 1057-1066.] | |
| [3] | 吴会娟, 鹿化煜, 王菁菁, 等. 全球沙漠面积和粉尘排放量的新估算[J]. 科学通报, 2022, 67(9): 860-871. |
| [Wu Huijuan, Lu Huayu, Wang Jingjing, et al. A new estimate of global desert area and quantity of dust emission[J]. Chinese Science Bulletin, 2022, 67(9): 860-871.] | |
| [4] | Okin S G, Mahowald N, Chadwick A O, et al. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems[J]. Global Biogeochemical Cycles, 2004, 18(2): 1-9. |
| [5] | Yang X, Scuderi L, Paillou P, et al. Quaternary environmental changes in the drylands of China: A critical review[J]. Quaternary Science Reviews, 2011, 30(23-24): 3219-3233. |
| [6] |
范小露, 张新毅, 田明中. 巴丹吉林沙漠东南缘末次冰期沉积物地球化学特征及气候指示意义[J]. 干旱区地理, 2021, 44(2): 409-417.
doi: 10.12118/j.issn.1000–6060.2021.02.12 |
|
[Fan Xiaolu, Zhang Xinyi, Tian Mingzhong. Geochemical characteristics and paleoclimatic significance of the last glacial sediments in the southeastern margin of Badain Jaran Desert[J]. Arid Land Geography, 2021, 44(2): 409-417.]
doi: 10.12118/j.issn.1000–6060.2021.02.12 |
|
| [7] |
李想, 苏志珠, 韩瑞, 等. 风成沉积地层化学元素记录的毛乌素沙地气候变化[J]. 冰川冻土, 2019, 41(3): 563-573.
doi: 10.7522/j.issn.1000-0240.2019.0305 |
|
[Li Xiang, Su Zhizhu, Han Rui, et al. Climate change of Mu Us Desert revealed by geochemical elements in the aeolian sedimentary stratum[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 563-573.]
doi: 10.7522/j.issn.1000-0240.2019.0305 |
|
| [8] | Long H, Shen J, Chen J, et al. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China[J]. Quaternary Science Reviews, 2017, 174: 13-32. |
| [9] | 陈惠中, 金炯, 董光荣. 全新世古尔班通古特沙漠演化和气候变化[J]. 中国沙漠, 2001, 21(4): 18-24. |
| [Chen Huizhong, Jin Jiong, Dong Guangrong. Holocene evolution processes of Gurbantunggut Desert and climatic changes[J]. Journal of Desert Research, 2001, 21(4): 18-24.] | |
| [10] | Li S, Fan A. OSL chronology of sand deposits and climate change of last 18 ka in Gurbantunggut Desert, Northwest China[J]. Journal of Quaternary Science, 2011, 26(8): 813-818. |
| [11] |
徐宇杰, 刘冰, 孙爱军, 等. 古尔班通古特沙漠及周边区域全新世环境演变研究进展[J]. 干旱区地理, 2023, 46(4): 550-562.
doi: 10.12118/j.issn.1000-6060.2022.306 |
|
[Xu Yujie, Liu Bing, Sun Aijun, et al. Research progress of Holocene environmental evolution in the Gurbantunggut Desert and its surrounding areas[J]. Arid Land Geography, 2023, 46(4): 550-562.]
doi: 10.12118/j.issn.1000-6060.2022.306 |
|
| [12] | Cao M, Lü P, Ma F, et al. Holocene aeolian environmental dynamics in fixed and semi-fixed deserts over the arid Central Asia revealed by comprehensive sand-dune records[J]. Catena, 2024, 246: 108368. |
| [13] |
邹晓君, 马运强, 李志忠, 等. 古尔班通古特沙漠南缘风沙沉积记录的中晚全新世气候变化[J]. 中国沙漠, 2023, 43(6): 98-110.
doi: 10.7522/j.issn.1000-694X.2023.00057 |
|
[Zou Xiaojun, Ma Yunqiang, Li Zhizhong, et al. Mid-Late Holocene climate change recorded by eolian sand deposition in the southern margin of Gurbantunggut Desert[J]. Journal of Desert Research, 2023, 43(6): 98-110.]
doi: 10.7522/j.issn.1000-694X.2023.00057 |
|
| [14] | 中国科学院新疆综合考察队. 新疆地貌[M]. 北京: 科学出版社, 1978. |
| [Xinjiang Comprehensive Investigation Team of Chinese Academy of Sciences. Geomorphology of Xinjiang[M]. Beijing: Science Press, 1978.] | |
| [15] | 钱亦兵, 吴兆宁. 古尔班通古特沙漠环境研究[M]. 北京: 科学出版社, 2010. |
| [Qian Yibing, Wu Zhaoning. Environmental Research in the Gurbantunggut Desert[M]. Beijing: Science Press, 2010.] | |
| [16] | 吴正. 中国沙漠及其治理[M]. 北京: 科学出版社, 2009. |
| [Wu Zheng. Deserts in China and Their Management[M]. Beijing: Science Press, 2009.] | |
| [17] | Folk R L, Ward W C. Brazos River Bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. |
| [18] | Aitken M J. An Introduction to Optical Dating[M]. Oxford, UK: Oxford University Press, 1998. |
| [19] | Lu Y, Wang X, Wintle A. A new OSL chronology for dust accumulation in the last 130,000 yr for the Chinese Loess Plateau[J]. Quaternary Research, 2007, 67(1): 152-160. |
| [20] | 刘铮瑶. 古尔班通古特沙漠沙丘地貌及其发育环境[D]. 西安: 陕西师范大学, 2020. |
| [Liu Zhengyao. Dune Landform and Its Development Environment in Gurbantunggut Desert[D]. Xi’an: Shaanxi Normal University, 2020.] | |
| [21] | 杨万志, 姜云辉, 周军, 等. 新疆区域地球化学参数特征及其研究意义[J]. 新疆地质, 2008, 26(3): 236-239. |
| [Yang Wanzhi, Jiang Yunhui, Zhou Jun, et al. Parameter characteristics and research meaning of regional geochemistry of Xinjiang[J]. Xinjiang Geology, 2008, 26(3): 236-239.] | |
| [22] | Hu Z, Gao S. Upper crustal abundances of trace elements: A revision and update[J]. Chemical Geology, 2008, 253(3-4): 205-221. |
| [23] | 赵振华. 微量元素地球化学原理[M]. 北京: 科学出版社, 2016. |
| [Zhao Zhenhua. Geochemical Principle of Trace Elements[M]. Beijing: Science Press, 2016.] | |
| [24] | 文启忠. 中国黄土地球化学[M]. 北京: 科学出版社, 1989. |
| [Wen Qizhong. Loess Geochemistry of China[M]. Beijing: Science Press, 1989.] | |
| [25] | 靳建辉, 李志忠, 陈秀玲, 等. 新疆伊犁塔克尔莫乎尔沙漠全新世晚期沉积微量元素反映的古气候变化[J]. 沉积学报, 2011, 29(2): 336-345. |
| [Jin Jianhui, Li Zhizhong, Chen Xiuling, et al. Paleoclimatic significance of geochemical elements from Takermohur Desert, Xinjiang since late Holocene[J]. Acta Sedimentologica Sinica, 2011, 29(2): 336-345.] | |
| [26] | 中国科学院新疆资源开发综合考察队. 新疆第四纪地质与环境[M]. 北京: 中国农业出版社, 1994. |
| [Xinjiang Resources Development Comprehensive Investigation Team of Chinese Academy of Sciences. Quaternary Geology and Environment in Xinjiang[M]. Beijing: China Agriculture Press, 1994.] | |
| [27] | 陈吉阳. 天山乌鲁木齐河源全新世冰川变化的地衣年代学等若干问题之初步研究[J]. 中国科学(B辑), 1988(1): 95-104. |
| [Chen Jiyang. A preliminary study on the lichen chronology of Holocene glacier changes in the source of Urumqi River, Tianshan Mountains[J]. Scientia Sinica (Science in China), 1988(1): 95-104.] | |
| [28] | 阎顺, 穆桂金, 孔昭宸, 等. 天山北麓晚全新世环境演变及其人类活动的影响[J]. 冰川冻土, 2004, 26(4): 403-410. |
| [Yan Shun, Mu Guijin, Kong Zhaochen, et al. Environmental evolvement and human activity impact in the late Holocene on the north slopes of the Tianshan Mountains, China[J]. Journal of Glaciology and Geocryology, 2004, 26(4): 403-410.] | |
| [29] | 洪业汤, 姜洪波, 洪冰, 等. 近5000 a的气候波动与太阳变化[J]. 中国科学(D辑:地球科学), 1998, 28(6): 491-497. |
| [Hong Yetang, Jiang Hongbo, Hong Bing, et al. Climate fluctuation and solar change in recent 5000 a[J]. Science in China, 1998, 28(6): 491-497.] | |
| [30] | 王绍武. 全新世气候变化[M]. 北京: 气象出版社, 2011. |
| [Wang Shaowu. Holocene Climate Change[M]. Beijing: Meteorological Press, 2011.] | |
| [31] | 冯晓华, 阎顺, 倪健, 等. 新疆北部平原湖泊记录的晚全新世湖面波动及环境变化[J]. 科学通报, 2006, 51(1): 49-55. |
| [Feng Xiaohua, Yan Shun, Ni Jian, et al. Late Holocene lake level fluctuations recorded by plain lakes in northern Xinjiang[J]. Chinese Science Bulletin, 2006, 51(1): 49-55.] | |
| [32] | 蒋庆丰, 沈吉, 刘兴起, 等. 2.5 ka来新疆吉力湖湖泊沉积记录的气候环境变化[J]. 湖泊科学, 2010, 22(1): 119-126. |
| [Jiang Qingfeng, Shen Ji, Liu Xingqi, et al. Environmental changes recorded by lake sediments from Lake Jili, Xinjiang during the past 2500 years[J]. Journal of Lake Sciences, 2010, 22(1): 119-126.] | |
| [33] | Ran M, Feng Z. Variation in carbon isotopic composition over the past ca. 46,000 yr in the loess-paleosol sequence in central Kazakhstan and paleoclimatic significance[J]. Organic Geochemistry, 2014, 73: 47-55. |
| [34] | 刘露雨. 环准噶尔盆地全新世人类活动遗址的时空分布及其气候环境影响因素研究[D]. 兰州: 兰州大学, 2022. |
| [Liu Luyü. Study on the Spatial-Temporal Distribution of Holocene Human Occupation Sites around the Junggar Basin and its Climatic and Environmental Influence Factor[D]. Lanzhou: Lanzhou University, 2022.] | |
| [35] | Jin L, Chen F, Morrill C, et al. Causes of early Holocene desertification in arid central Asia[J]. Climate Dynamics, 2012, 38(7-8): 1577-1591. |
| [36] | Chen F, Jia J, Chen J, et al. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146: 134-146. |
| [37] | 谢海超. 地球化学指标记录的亚洲西风区晚第四纪气候变化特征[D]. 兰州: 兰州大学, 2019. |
| [Xie Haichao. Climate Change Characteristics in the Asian Westerlies Dominated Area Recorded by Geochemical Proxies during Late Quaternary[D]. Lanzhou: Lanzhou University, 2019.] |
| [1] | SHANG Shujing, LIU Danhui, ZHOU Yixin, WU Jiaju, LU Ting, LI Wenjun. Prediction of the suitable distribution areas of Arnebia euchroma (Boraginaceae) in China under change climate conditions [J]. Arid Zone Research, 2025, 42(9): 1628-1639. |
| [2] | YANG Ziyue, YIN Benfeng, ZHANG Shujun, HUANG Yunjie, YANG Ao, ZHANG Yuanming, GAO Yingzhi, JING Changqing. Distribution of soil phosphorus fractions in lichen crusts at different slope positions in Gurbantunggut Desert [J]. Arid Zone Research, 2025, 42(7): 1236-1245. |
| [3] | LIU Jiayue, KOU Wei, YUAN Jianqiang, XUE Shaoqi, WANG Xudong. Effects of incorporating medium and trace elements on the mineralization characteristics and soil organic carbon components of aeolian sandy soil [J]. Arid Zone Research, 2025, 42(7): 1246-1256. |
| [4] | YAN Yingcun, SUN Shujiao, YU Di, GAO Guisheng. Impact and trend estimation of climate change on vegetation greenness in the Qaidam Basin [J]. Arid Zone Research, 2025, 42(7): 1257-1268. |
| [5] | ZHAO Yanfen, WANG Chuncheng, PAN Borong. Predicting the suitable distribution areas of Panzerina lanata in China under climate change [J]. Arid Zone Research, 2025, 42(10): 1851-1859. |
| [6] | YUE Shengru, HU Xuefei, HOU Xiaohua, MENG Fujun. Cotton production assessment in the Tarim River Basin based on CMIP6 models [J]. Arid Zone Research, 2025, 42(10): 1925-1938. |
| [7] | ZOU Bin, ZOU Shan, YANG Yuhui. Dynamic changes and driving factors of surface water body in Xinjiang from 1990 to 2023 [J]. Arid Zone Research, 2025, 42(1): 40-50. |
| [8] | LYU Zhuangzhuang, QIAO Qingqing, DONG Sunyi, WANG Dong. Paleoclimatic evolution and driving mechanisms in arid areas of inland Asia during the Middle Miocene Climatic Optimum in the context of global climate warming [J]. Arid Zone Research, 2024, 41(8): 1309-1322. |
| [9] | ZHOU Jie, WANG Xuhu, DU Weibo, ZHOU Xiaolei, YANG Jie, ZAHNG Xiaowei. Prediction of potential distribution area of Picea schrenkiana under the background of climate change [J]. Arid Zone Research, 2024, 41(7): 1167-1176. |
| [10] | LIANG Shuanghe, NIU Zuirong, JIA Ling. Analysis of runoff changes and attribution in the main stream of Zuli River in the past 65 years [J]. Arid Zone Research, 2024, 41(6): 928-939. |
| [11] | TANG Kexin, GUO Jianbin, HE Liang, CHEN Lin, WAN Long. Characteristics of the spatial and temporal evolution of Gross Primary Productivity and its influencing factors in China’s drylands [J]. Arid Zone Research, 2024, 41(6): 964-973. |
| [12] | ZHANG Jiaqi, LIU Zhao, HAN Zhongqing, WANG Lixia, ZHANG Jinxia, YUE Jiayin, GUAN Zilong. Trend change and prediction of blue-green water in the Jinghe River Basin under climate change [J]. Arid Zone Research, 2024, 41(12): 2045-2055. |
| [13] | ZHANG Qian, CAO Guangchao, ZHANG Lele, ZHAO Meiliang. Spatiotemporal changes in vegetation greenness on the southern slopes of the Qilian Mountains and their responses to climate change and human activities [J]. Arid Zone Research, 2024, 41(12): 2143-2153. |
| [14] | YANG Fei, ZHANG Wentao, ZHANG Feimin, WANG Chenghai. Climate characteristics and variation in the Qilian Mountains from 1961 to 2022 [J]. Arid Zone Research, 2024, 41(10): 1627-1638. |
| [15] | ZHANG Yin, SUN Congjian, LIU Geng, CHAO Jinlong, GENG Tianwei. Response of NDSI in the Tarim River Basin mountainous areas to climate change over the past 20 years [J]. Arid Zone Research, 2024, 41(10): 1639-1648. |
|
||