Arid Zone Research ›› 2023, Vol. 40 ›› Issue (12): 1959-1968.doi: 10.13866/j.azr.2023.12.09
• Plant Ecology • Previous Articles Next Articles
WANG Juan1,2(),WANG Zhao1,2,GUO Bin3,4,HE Huijuan1,2(),DONG Jinfang1,2
Received:
2023-02-16
Revised:
2023-09-13
Online:
2023-12-15
Published:
2023-12-18
WANG Juan, WANG Zhao, GUO Bin, HE Huijuan, DONG Jinfang. Spatiotemporal characteristics of vegetation carbon use efficiency and its sensitivity to climate in the Yellow River Basin in Shaanxi Province[J].Arid Zone Research, 2023, 40(12): 1959-1968.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Gradient change of vegetation CUE sensitivity to temperature and precipitation"
气温/℃ | 气温敏感性系数εtem | 降水量/mm | 降水量敏感性系数εpre |
---|---|---|---|
<9 | 0.108 | <400 | 0.002 |
9~9.5 | 0.276 | 400~450 | 0.065 |
9.5~10 | 0.049 | 450~500 | 0.055 |
10~10.5 | -0.233 | 500~550 | -0.025 |
10.5~11 | -0.371 | 550~600 | -0.065 |
11~11.5 | -0.408 | 600~650 | -0.095 |
11.5~12 | -0.425 | 650~700 | -0.021 |
12~12.5 | -0.441 | 700~750 | -0.013 |
12.5~13 | -0.479 | 750~800 | -0.002 |
>13 | -0.493 | >800 | -0.039 |
[1] | 郑飞鸽, 易桂花, 张廷斌, 等. 三江源植被碳利用率动态变化及其对气候响应[J]. 中国环境科学, 2020, 40(1): 401-413. |
[Zheng Feige, Yi Guihua, Zhang Tingbin, et al. Study on spatio-temporal dynamics of vegetation carbon use efficiency and its response to climate factors in Three-River Headwaters Region[J]. China Environmental Science, 2020, 40(1): 401-413. ] | |
[2] | 卢雅焱, 徐晓亮, 李基才, 等. 基于InVEST模型的新疆天山碳储量时空演变研究[J]. 干旱区研究, 2022, 39(6): 1896-1906. |
[Lu Yayan, Xu Xiaoliang, Li Jicai, et al. Research on the spatio-temporal variation of carbon storage in the Xinjiang Tianshan Mountains based on the InVEST model[J]. Arid Zone Research, 2022, 39(6): 1896-1906. ] | |
[3] |
Choudhury B J. Modeling radiation and carbon use efficiencies of maize, sorghum, and rice[J]. Agricultural and Forest Meteorology, 2001, 106(4): 317-330.
doi: 10.1016/S0168-1923(00)00217-3 |
[4] | 底阳平, 曾辉, 张扬建, 等. 多尺度碳利用效率研究进展[J]. 生态学杂志, 2021, 40(6): 1849-1860. |
[Di Yangping, Zeng Hui, Zhang Yangjian, et al. Research advances in carbon use efficiency at multiple scales[J]. Chinese Journal of Ecology, 2021, 40(6): 1849-1860. ] | |
[5] |
Delucia E H, Drake J E, Thomas R B. Forest carbon use efficiency: Is respiration a constant fraction of gross primary production[J]. Global Change Biology, 2007, 13(6): 1157-1167.
doi: 10.1111/gcb.2007.13.issue-6 |
[6] |
Zhang Y, Xu M, Chen H, et al. Global pattern of NPP to GPP ratio derived from MODIS data: Effects of ecosystem type, geographical location and climate[J]. Global Ecology and Biogeography, 2009, 18(3): 280-290.
doi: 10.1111/geb.2009.18.issue-3 |
[7] |
Zhang Y J, Yu G R, Yang J, et al. Climate-driven global changes in carbon use efficiency[J]. Global Ecology and Biogeography, 2014, 23(2): 144-155.
doi: 10.1111/geb.2014.23.issue-2 |
[8] | 安相, 陈云明, 唐亚坤. 东亚森林草地碳利用效率及碳通量空间变化的影响因素分析[J]. 水土保持研究, 2017, 24(5): 79-87, 92. |
[An Xiang, Chen Yunming, Tang Yakun, et al. Factors affecting the spatial variation of carbon use efficiency and carbon fluxes in East Asian forest and grassland[J]. Research of Soil and Water Conservation, 2017, 24(5): 79-87, 92. ] | |
[9] | 刘洋洋, 王倩, 杨悦, 等. 2000—2013年中国植被碳利用效率(植被CUE)时空变化及其与气象因素的关系[J]. 水土保持研究, 2019, 26(5): 278-286, 2. |
[Liu Yangyang, Wang Qian, Yang Yue, et al. Spatiotemporal dynamic of vegetation carbon use efficiency and its relationship with climate factors in China during the period 2000-2013[J]. Research of Soil and Water Conservation, 2019, 26(5) : 278-286, 2. ] | |
[10] |
陈智. 2000—2015年中国东北森林生产力和碳素利用率的时空变异[J]. 应用生态学报, 2019, 30(5): 1625-1632.
doi: 10.13287/j.1001-9332.201905.033 |
[Chen Zhi. Spatiotemporal variation of productivity and carbon use efficiency of forests in Northeast China from 2000 to 2015[J]. Chinese Journal of Applied Ecology, 2019, 30(5) : 1625-1632. ]
doi: 10.13287/j.1001-9332.201905.033 |
|
[11] |
Gang C, Wang Z, Zhou W, et al. Assessing the spatiotemporal dynamic of global grassland water use efficiency in response to climate change from 2000 to 2013[J]. Journal of Agronomy and Crop Science, 2015, 202(5): 343-354.
doi: 10.1111/jac.2016.202.issue-5 |
[12] | 罗赵慧, 朱璐平, 张晓君, 等. 粤港澳大湾区植植被CUE变化及与气候变化的关系[J]. 中国环境科学, 2021, 41(12): 5793-5805. |
[Luo Zhaohui, Zhu Luping, Zhang Xiaojun, et al. Spatiotemporal variation of CUE andits correlation with climate change in Guangdong-Hong Kong-Macao Greater Bay Area[J]. China Environmental Science, 2021, 41(12): 5793-5805. ] | |
[13] |
王娟, 何慧娟, 董金芳, 等. 黄河流域植被净初级生产力时空特征及自然驱动因子[J] .中国沙漠, 2021, 41(6): 213-222.
doi: 10.7522/j.issn.1000-694X.2021.00116 |
[Wang Juan, He Huijuan, Dong Jinfang, et al. Spatio-temporal distribution of vegetation net primary productivity in the Yellow River Basin in 2000-2019 and its natural driving factors[J]. Journal of Desert Research, 2021, 41(6): 213-222. ]
doi: 10.7522/j.issn.1000-694X.2021.00116 |
|
[14] | 吕锦心, 梁康, 刘昌明, 等. 无定河流域土地覆被空间分异机制及相关水碳变量变化[J]. 干旱区研究, 2023, 40(4): 563-572. |
[Lv Jinxin, Liang Kang, Liu Changming, et al. Spatial differentiation mechanism of land cover and related changes in water-carbon variables in Wuding River Basin[J]. Arid Zone Research, 2023, 40(4): 563-572. ] | |
[15] | 李登科, 王钊. 退耕还林后陕西省植被覆盖度变化及其对气候的响应[J]. 生态学杂志, 2020, 39(1): 1-10. |
[Li Dengke, Wang Zhao. Changes of fractional vegetation coverage after returning farmland to forests and its response to climate in Shaanxi[J]. Chinese Journal of Ecology, 2020, 39(1): 1-10. ] | |
[16] | 陈雅如. 三峡库区森林生产力与碳储量对景观格局变化的响应[D]. 北京: 中国林业科学研究院, 2017. |
[Chen Yaru. The Response of Forest Productivity and Carbon Storage to Landscape Pattern Change in Three Gorges Reservoir Area[D]. Beijing: Chinese Academyof Forestry, 2017. ] | |
[17] | Jiang C, Wu Z F, Cheng J. Impacts of urbanization on net primary productivity in the Pearl River Delta[J]. International Journal of Plant Production, 2015, 9(4): 1735-6814. |
[18] | 吴宗洋, 蔡卓雅, 郭英, 等. 黄河流域多源遥感土地覆被数据精度评价与一致性分析[J] .中国生态农业学报, 2023, 31(6): 917-927. |
[Wu Zongyang, Cai Zhuoya, Guo Ying, et al. Accuracy evaluation and consistency analysis on multi-source remote sensing land cover data in the Yellow River Basin[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 917-927. ] | |
[19] |
Shi Xun, Andrew E, Xia L. Using spatial information technologies to select sites for biomass power plants: A case study in Guangdong Province[J]. Biomass and Bioenergy, 2008, 32(1): 35-43.
doi: 10.1016/j.biombioe.2007.06.008 |
[20] | 文妙霞, 何学高, 刘欢, 等. 基于地理探测器的宁夏草地植被覆被时空分异及驱动因子[J]. 干旱区研究, 2023, 40(8): 1322-1332. |
[Wen Miaoxia, He Xuegao, Liu Huan, et al. Analysis of the spatiotemporal variation characteristics and driving factors of grassland vegetation cover in Ningxia based on geographical detectors[J]. Arid Zone Research, 2023, 40(8): 1322-1332. ] | |
[21] |
崔茜琳, 何云玲, 李宗善. 青藏高原植被水分利用效率时空变化及与气候因子的关系[J]. 应用生态学报, 2022, 33(6): 1525-1532.
doi: 10.13287/j.1001-9332.202206.024 |
[Cui Xilin, He Yunling, Li Zengshan. Spatial-temporal variation of vegetation water use efficiency and its relationship with climate factors over the Qinghai-Tibet Plateau, China[J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1525-1532. ]
doi: 10.13287/j.1001-9332.202206.024 |
|
[22] | Zheng H, Zhang L, Zhu R, et al. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin[J] .Water Resources Research, 2009, 45: 641-648. |
[23] | 袁甲, 沈非, 聂兵, 等. 皖江城市带植被NPP时空变化及其气候响应[J]. 测绘科学, 2017, 42(11): 62-67. |
[Yuan Jia, Shen Fei, Nie Bing, et al. Temporal-spatial patterns of vegetation net primary productivity and its response to climate factors in Wanjiang City belt based on CASA model[J]. Science of Surveying and Mapping, 2017, 42(11): 62-67. ] | |
[24] | 姬盼盼, 高敏华, 杨晓东. 中国西北部干旱区 NPP 驱动力分析: 以新疆伊犁河谷和天山山脉部分区域为例[J]. 生态学报, 2019, 39(8): 2995-3006. |
[Ji Panpan, Gao Minhua, Yang Xiaodong, et al. Analysis of NPP driving force in an arid region of Northwest China: A case study in Yili Valley and parts of Tianshan Mountains, Xinjiang, China[J]. Acta Ecologica Sinica, 2019, 39(8): 2995-3006. ] | |
[25] |
王金杰, 赵安周, 胡小枫. 京津冀植被净初级生产力时空分布及自然驱动因子分析[J]. 生态环境学报 2021, 30(6): 1158-1167.
doi: 10.16258/j.cnki.1674-5906.2021.06.006 |
[Wang Jinjie, Zhao Anzhou, Hu Xiaofeng. Spatiotemporal distribution of vegetation net primary productivity in Beijing-Tianjin-Hebei and natural driving factors[J]. Ecology and Environmental Sciences, 2021, 30(6): 1158-1167. ]
doi: 10.16258/j.cnki.1674-5906.2021.06.006 |
|
[26] |
张继平, 刘春兰, 郝海广, 等. 基于 MODIS GPP/NPP 数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究[J]. 生态环境学报, 2015, 24(1): 8-13.
doi: 10.16258/j.cnki.1674-5906.2015.01.002 |
[Zhang Jiping, Liu Chunlan, Hao Haiguang, et al. Spatial-temporal change of carbon storage and carbon sink of grassland ecosystem in the Three-River Headwaters Region based on MODIS GPP/NPP data[J]. Ecology and Environmental Sciences, 2015, 24(1): 8-13. ]
doi: 10.16258/j.cnki.1674-5906.2015.01.002 |
|
[27] |
洪辛茜, 黄勇, 孙涛. 我国西南喀斯特地区2001—2018年植被净初级生产力时空演变研究[J]. 生态学报, 2021, 41(24): 1-11.
doi: 10.1016/j.chnaes.2020.10.007 |
[Hong Xinqian, Huang Yong, Sun Tao. Spatiotemporal evolution of vegetation net primary productivity in the karst region of southwest China from 2001 to 2018[J]. Acta Ecologica Sinica, 2021, 41(24): 1-11. ]
doi: 10.1016/j.chnaes.2020.10.007 |
|
[28] | 国志兴, 王宗明, 张柏, 等. 2000—2006年东北地区植被NPP的时空特征及影响因素分析[J]. 资源科学, 2008, 30(8): 1226-1235. |
[Guo Zhixing, Wang Zongming, Zhang Bo, et al. Analysis of temporal-spatial characteristics and factors influencing vegetation NPP in Northeast China from 2000 to 2006[J]. Resources Science, 2008, 30(8): 1226-1235. ] | |
[29] | Goudie A. Encyclopedia of Global Change[M]. Oxford: Oxford University Press, 2002: 365-369. |
[30] |
Yu G R, Zhu X J, Fu Y L, et al. Spatial pattern and climate drivers of carbon fluxes in terrestrial ecosystems of China[J] .Global Change Biology, 2013, 19(3): 798-810.
doi: 10.1111/gcb.2013.19.issue-3 |
[31] |
Lieth H. Primary production: Terrestrial ecosystems[J]. Human Ecology, 1973, 1: 303-332.
doi: 10.1007/BF01536729 |
[32] |
Ryan M G, Hubbard R M, Pongracic S, et al. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status[J]. Tree Physiology, 1996, 16: 333-343.
pmid: 14871734 |
[33] | Allison S D, Wallenstein M D, Bradford M A. Soil-carbon response to warming dependent on microbial physiology[J]. NatureGeoscience, 2010, 3(5): 336-340. |
|