Arid Zone Research ›› 2022, Vol. 39 ›› Issue (3): 820-828.doi: 10.13866/j.azr.2022.03.15
Previous Articles Next Articles
HE Qixin1,2,3(),CAO Guangchao2,3,4(),CAO Shengkui1,2,3,CHENG Mengyuan1,2,3,DIAO Erlong1,2,3,GAO Siyuan1,2,3,QIU Xunxun1,2,3,ZHAO Meiliang1,2,3,CHENG Guo1,2,3
Received:
2021-09-03
Revised:
2022-02-22
Online:
2022-05-15
Published:
2022-05-30
Contact:
Guangchao CAO
E-mail:heqixin0504@163.com;Caoguangchao@qhnu.edu.cn
HE Qixin,CAO Guangchao,CAO Shengkui,CHENG Mengyuan,DIAO Erlong,GAO Siyuan,QIU Xunxun,ZHAO Meiliang,CHENG Guo. Hydrogen-oxygen isotope characteristics of water bodies in the Xiangride-Qaidam River Basin and its influencing factors[J].Arid Zone Research, 2022, 39(3): 820-828.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Hydrogen-oxygen stable isotope ratio in the Xiangride-Qaidam River Basin"
类型 | 样品个数 | δ2H/‰ | δ18O/‰ | d-excess/‰ | |||||
---|---|---|---|---|---|---|---|---|---|
均值±标准差 | 变化范围 | 均值±标准差 | 变化范围 | 均值±标准差 | 变化范围 | ||||
湖水 | 8 | -116.98±21.10 | -139.63~-83.58 | -18.19±3.38 | -21.63~-11.99 | 28.57±6.84 | 12.34~33.43 | ||
冰 | 13 | -119.23±12.04 | -102.10~-148.90 | -17.84±2.02 | -22.64~-15.22 | 23.50±5.16 | 16.37~32.19 | ||
河水 | 31 | -107.87±8.50 | -131.78~-91.88 | -15.89±1.70 | -20.78~-12.92 | 19.14±5.40 | 9.88~34.44 | ||
地下水 | 3 | -109.32±5.58 | -101.57~-114.53 | -16.34±0.93 | -15.05~-17.20 | 21.32±1.85 | 18.83~23.10 | ||
井水 | 3 | -99.36±7.17 | -104.96~-89.24 | -13.90±1.23 | -14.86~-12.17 | 11.81±2.64 | 8.10~13.96 | ||
雪 | 1 | -73.48 | - | -7.80 | - | -11.12 | - |
[1] |
檀康达, 王仕琴, 郑文波. 基于卫星降水产品的华北北纬38°带降水氢氧同位素时空特征及水汽来源[J]. 应用生态学报, 2021, 32(6): 1951-1962.
doi: 10.13287/j.1001-9332.202106.026 pmid: 34212599 |
[ Tan Kangda, Wang Shiqin, Zheng Wenbo. Spatial and temporal variations of hydrogen and oxygen isotopes and sources of water vapour indicated from satellite precipitation products along the transection of 38° north latitude in North China[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 1951-1962. ]
doi: 10.13287/j.1001-9332.202106.026 pmid: 34212599 |
|
[2] | 徐秀婷. 石羊河流域降水氢氧同位素的区域差异及水汽来源分析[D]. 兰州: 西北师范大学, 2020. |
[ Xu Xiuting. Analyses of Regional Differences of Hydrogen and Oxygen Isotopes in Precipitation and Vapor Sources in Shiyang River Basin[D]. Lanzhou: Northwest Normal University, 2020. ] | |
[3] | 徐秀婷, 贾文雄, 朱国锋, 等. 乌鞘岭南、北坡降水稳定同位素特征及水汽来源对比[J]. 环境科学, 2020, 41(1): 155-165. |
[ Xu Xiuting, Jia Wenxiong, Zhu Guofeng, et al. Stable isotope characteristics and vapor source of precipitation in the South and North slopes of Wushaoling Mountain[J]. Environmental Science, 2020, 41(1): 155-165. ] | |
[4] | 张宏鑫, 吴亚, 罗炜宇, 等. 雷州半岛岭北地区地下水水文地球化学特征[J]. 环境科学, 2020, 41(11): 4924-4935. |
[ Zhang Hongxin, Wu Ya, Luo Weiyu, et al. Hydrogeochemical investigations of groundwater in the Lingbei area, Leizhou Peninsula[J]. Environmental Science, 2020, 41(11): 4924-4935. ] | |
[5] | 郑扬帆. 利用稳定同位素方法分析地下水补给来源[J]. 内蒙古煤炭经济, 2016(14): 153-154. |
[ Zheng Yangfan. Analysis of Groundwater recharge sources by stable isotope[J]. Inner Mongolia Coal Economy, 2016(14): 153-154. ] | |
[6] |
姬王佳, 黄亚楠, 李冰冰, 等. 陕北黄土区深剖面不同土地利用方式下土壤水氢氧稳定同位素特征[J]. 应用生态学报, 2019, 30(12): 4143-4149.
doi: 10.13287/j.1001-9332.201912.020 pmid: 31840459 |
[ Ji Wangjia, Huang Yanan, Li Bingbing, et al. Oxygen and hydrogen stable isotope compositions of soil water in deep loess profile under different land use types of northern Shaanxi, China[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4143-4149. ]
doi: 10.13287/j.1001-9332.201912.020 pmid: 31840459 |
|
[7] | 王仕琴, 宋献方, 肖国强, 等. 基于氢氧同位素的华北平原降水入渗过程[J]. 水科学进展, 2009, 20(4): 495-501. |
[ Wang Shiqin, Song Xianfang, Xiao Guoqiang, et al. Appliance of oxygen and hydrogen isotope in the process of precipitation infiltration in the shallow groundwater areas of North China Plain[J]. Advances in Water Science, 2009, 20(4): 495-501. ] | |
[8] | 邢星, 陈辉, 朱建佳, 等. 柴达木盆地诺木洪地区5种优势荒漠植物水分来源[J]. 生态学报, 2014, 34(21): 6277-6286. |
[ Chen Hui, Zhu Jianjia, et al. Water sources of five dominant desert plant species in Nuomuhong area of Qaidam Basin[J]. Acta Ecologica Sinica, 2014, 34(21): 6277-6286. ] | |
[9] | 杨艳林, 靖晶, 赵永波, 等. 基于氢氧稳定同位素的武汉北部新城地表水-地下水转换关系研究[J/OL]. 中国地质: 1-12[2021-04-22]. http://kns.cnki.net/kcms/detail/11.1167.P.20210419.1413.012.html. |
Yang Yanlin, Zhao Yongbo, et al. Conversion relationship between surface water and groundwater based on stable isotopes of D and 18O of new town in the northern Wuhan, Hubei[J/OL]. Geology in China: 1-12 [2021-04-22]. http://kns.cnki.net/kcms/detail/11.1167.P.20210419.1413.012.html. ] | |
[10] |
孔晓乐, 杨永辉, 曹博, 等. 永定河上游地表水-地下水水化学特征及其成因分析[J]. 环境科学, 2021, 42(9): 4202-4210.
doi: 10.1021/es800044m |
[ Kong Xiaole, Yang Yonghui, Cao Bo, et al. Hydrochemical characteristics and factors of surface water and groundwater in the upper Yongding River basin[J]. Environmental Science, 2021, 42(9): 4202-4210. ]
doi: 10.1021/es800044m |
|
[11] |
雷义珍, 曹生奎, 曹广超, 等. 青海湖沙柳河流域不同时期地表水与地下水的相互作用[J]. 自然资源学报, 2020, 35(10): 2528-2538.
doi: 10.31497/zrzyxb.20201017 |
[ Lei Yizhen, Cao Shengkui, Cao Guangchao, et al. Study on surface water and groundwater interaction of Shaliu River Basin in Qinghai Lake in different periods[J]. Journal of Natural Resources, 2020, 35(10): 2528-2538. ]
doi: 10.31497/zrzyxb.20201017 |
|
[12] | 陈定帅, 高磊, 彭新华, 等. 干旱半干旱区土壤水稳定性氢氧同位素混合模型研究[J]. 土壤, 2018, 50(1): 190-194. |
[ Chen Dingshuai, Gao Lei, Peng Xinhua, et al. Hydrogen and oxygen isotope mixing model of soil water in arid and semiarid region[J]. Soils, 2018, 50(1): 190-194. ] | |
[13] | 曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869. |
[ Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review[J]. Arid Zone Research, 2020, 37(4):857-869. ] | |
[14] | 刘杨民, 张明军, 王圣杰, 等. 基于GCM的西北干旱区降水稳定氢氧同位素年际变化模拟[J]. 水土保持研究, 2016, 23(1): 260-267, 277. |
[ Liu Yangmin, Zhang Mingjun, Wang Shengjie, et al. Interannual variation of stable hydrogen and oxygen isotopes in precipitation in arid Northwest China based on GCMs[J]. Research of Soil and Water Conservation, 2016, 23(1): 260-267, 277. ] | |
[15] | 郭任宏. 柴达木盆地平原区蒸散量及浅层地下水的分布特征[D]. 北京: 中国地质大学, 2015. |
[ Guo Renhong. Distribution of Evapotranspiration and Shallow Groundwater in Plain Area over Qaidam Basin[D]. Beijing: China University of Geosciences, 2015. ] | |
[16] | 李劭宁, 贾晓鹏. 格尔木河222Rn同位素变化及其对地表水-地下水交互关系的指示意义[J]. 冰川冻土, 2021, 43(4): 1190-1199. |
[ Li Shaoning, Jia Xiaopeng. Variability of 222Rn in Golmud River and its implication for surface-groundwater interaction[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1190-1199. ] | |
[17] | 崔亚莉, 刘峰, 郝奇琛, 等. 诺木洪冲洪积扇地下水氢氧同位素特征及更新能力研究[J]. 水文地质工程地质, 2015, 42(6): 1-7. |
[ Cui Yali, Liu Feng, Hao Qichen, et al. Hydrogen and oxygen isotope characteristics and renewal capacity of groundwater in Nomukhong alluvial fan[J]. Hydrogeology & Engineering Geology, 2015, 42(6): 1-7. ] | |
[18] | 孔娜, 渠涛, 谭红兵, 等. 柴达木盆地河流同位素分布特征及径流变化[J]. 干旱区研究, 2014, 31(5): 948-954. |
[ Kong Na, Qu Tao, Tan Hongbing, et al. Isotope distribution characteristics and runoff changes of rivers in the Qaidam Basin[J]. Arid Zone Research, 2014, 31(5): 948-954. ] | |
[19] | 徐凯. 柴达木盆地南翼山油田水的水化学与氢氧同位素地球化学特征[D]. 西宁: 中国科学院青海盐湖研究所, 2021. |
[ Xu Kai. Water Chemistry and Hydrogen-Oxygen Isotope Geochemistry of Oil Field Water in the South Wing of the Qaidam Basin[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2021. ] | |
[20] | 康国飞. 绿洲农业区可持续性综合研究[D]. 北京: 北京林业大学, 2004. |
[ Kang Guofei.General Sustainability Study of Oasis Agricultural Area-Case Study, Xiangride Oasis, Qinhgai Province[D]. Beijing: Beijing Forestry University, 2004. ] | |
[21] | 费俊亮, 贾绍凤, 朱文彬. 香日德农场异地扶贫移民对迁入地的适应性评价[J]. 首都师范大学学报(自然科学版), 2010, 31(4):58-62. |
[ Fei Junliang, Jia Shaofeng, Zhu Wenbin. The adaptability evaluation of poverty reduction off-site migrants in Xiangride farm to resettlement[J]. Journal of Capital Normal University (Natural Science Edition), 2010, 31(4): 58-62. ] | |
[22] | 毛军. 柴达木盆地香日德绿洲灌溉对地下水的影响及生态响应研究[D]. 北京: 北京林业大学, 2007. |
[ Mao Jun. Study on the Impact of Irrigation on Groundwater and its Ecological Response of Xiangride Oasis in Qaidum Basin[D]. Beijing: Beijing Forestry University, 2007. ] | |
[23] | 韩晓卓, 李自珍, 张克斌, 等. 水资源系统生态风险的分析与评价--以香日德绿洲地区为例[J]. 中国水土保持科学, 2005, 3(2): 113-118. |
[ Han Xiaozhuo, Li Zizhen, Zhang Kebin, et al. Ecological risk analysis and evaluation of water resources system: A case study of Xiangride oasis[J]. Science of Soil and Water Conservation, 2005, 3(2): 113-118. ] | |
[24] | 吴学琴. 香日德河流域生态用水研究[D]. 西宁: 青海大学, 2017. |
[ Wu Xueqin. Studyon Ecological Water Use in Xiangride River Basin[D]. Xining: Qinghai University, 2017. ] | |
[25] | 吴学琴, 李若东, 管吕军. 香日德河流域近53年ET-0变化特征[J]. 青海大学学报, 2017, 35(1): 45-50. |
[ Wu Xueqin, Li Ruodong, Guan Lvjun. The characteristics of potential evapotranspiration of Xiangride River Basin in the 53 years[J]. Journal of Qinghai University, 2017, 35(1): 45-50. ] | |
[26] | 林时君, 贾绍凤. 香日德河流域水资源地理数据库的构建与应用[J]. 广东水利水电, 2010(8): 43-45. |
[ Lin Shijun, Jia Shaofeng. Xiangride River Basin water resources construction and application of geographic data base[J]. Guangdong Water Resources and Hydropower, 2010(8): 43-45. ] | |
[27] | 张家好. 香日德-诺木洪山前平原地区地下水资源评价[D]. 北京: 中国地质大学, 2013. |
[ Zhang Jiahao. Groundwater Resource Evaluation of Xiangride-Nuomuhong Piedmont Plain[D]. Beijing: China University of Geosciences, 2013. ] | |
[28] | 王晓娟. 柴达木盆地水资源优化配置[D]. 西安: 长安大学, 2019. |
[ Wang Xiaojuan. Optimal Allocation of Water Resources in Qaidam Basin[D]. Xi’an: Chang’an University, 2019. ] | |
[29] | 毛军, 贾绍凤, 张克斌. FEFLOW软件在地下水数值模拟中的应用--以柴达木盆地香日德绿洲为例[J]. 中国水土保持科学, 2007, 5(4): 44-48. |
[ Mao Jun, Jia Shaofeng, Zhang Kebin. Application of FEFLOW software in numerical groundwater simulation: An example of Xiangrid oasis in the Qaidam Basin[J]. Science of Soil and Water Conservation, 2007, 5(4): 44-48. ] | |
[30] | 冉屹立, 熊育久, 赵文利, 等. 氢氧同位素测量差异及误差来源分析[J]. 干旱区资源与环境, 2021, 35(1): 176-181. |
[ Ran Yili, Xiong Yujiu, Zhao Wenli, et al. Study on the consistence between stable hydrogen and oxygen isotopes measured by different equipment and methods[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 176-181. ] | |
[31] |
Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
doi: 10.3402/tellusa.v16i4.8993 |
[32] |
房丽晶, 高瑞忠, 贾德彬, 等. 内蒙古草原巴拉格尔河流域不同水体转化特征及环境驱动因素[J]. 应用生态学报, 2021, 32(3): 860-868.
doi: 10.13287/j.1001-9332.202103.24 pmid: 33754551 |
[ Fang Lijing, Gao Ruizhong, Jia Debin, et al. Characteristics and environmental driving factors of water transformation in the Balaguer River watershed of Inner Mongolia steppe[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 860-868. ]
doi: 10.13287/j.1001-9332.202103.24 pmid: 33754551 |
|
[33] | 刘洁遥, 张福平, 冯起, 等. 西北地区降水稳定同位素的云下二次蒸发效应[J]. 应用生态学报, 2018, 29(5): 109-118. |
[ Liu Jieyao, Zhang Fuping, Feng Qi, et al. Influence of below-cloud secondary evaporation on stable isotope composition in precipitation in Northwest China[J]. Chinese Journal of Applied Ecology, 2018, 29 (5): 109-118. ] | |
[34] | 章新平, 姚檀栋. 青藏高原东北地区现代降水中δ2H与δ18O的关系研究[J]. 冰川冻土, 1996, 18(4): 74-79. |
[ Zhang Xinping, Yao Tandong. Relations between δ2H and δ18O in precipitation at present in the Northeast Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 1996, 18(4): 74-79. ] | |
[35] | 崔蕊, 汪季, 张成福, 等. 吉兰泰盐湖氢氧同位素及湖水来源分析[J]. 内蒙古林业科技, 2019, 45(1): 17-21. |
[ Cui Rui, Wang Ji, Zhang Chengfu, et al. Analysis on hydrogen and oxygen isotopes and lake water source in Girantai Saline Lake[J]. Journal of Inner Mongolia Forestry Science and Technology, 2019, 45(1): 17-21. ] | |
[36] |
Liu Weiguo, Li Xiangzhong, Zhang Ling, et al. Evaluation of oxygen isotopes in carbonate as an indicator of lake evolution in arid areas: The modern Qinghai Lake, Qinghai-Tibet Plateau[J]. Chemical Geology, 2009, 268(1-2): 126-136.
doi: 10.1016/j.chemgeo.2009.08.004 |
[37] |
冯盛楠, 刘兴起, 李华淑. 中国西部湖泊水体δ2H与δ18O的空间变化特征及其影响因素[J]. 湖泊科学, 2020, 32(4): 1199-1211.
doi: 10.18307/2020.0426 |
[ Feng Shengnan, Liu Xingqi, Li Huashu. Spatial variations of δ2H and δ18O in lake water of western China and their controlling factors[J]. Journal of Lake Sciences, 2020, 32(4): 1199-1211. ]
doi: 10.18307/2020.0426 |
|
[38] | 秦欢欢, 高柏, 陈益平, 等. 拉萨河夏季氢氧同位素空间分布特征及分析[J]. 地球与环境, 2021, 49(3): 277-284. |
[ Qin Huanhuan, Gao Bai, Chen Yiping, et al. Spatial distribution of hydrogen and oxygen isotopes in Lhasa River in summer and the implications[J]. Earth and Environment, 2021, 49(3): 277-284. ] | |
[39] |
Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133: 1702-1703.
pmid: 17814749 |
[40] | 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13): 801-806. |
[ Zheng Shuhui, Hou Fagao, Ni Baoling. Study on the hydrogen and oxygen stable isotopes in meteoric precipitation of China[J]. Chinese Science Bulletin, 1983, 28(13): 801-806. ] | |
[41] | 张升东. 基于环境同位素的锦绣川流域水循环规律研究[D]. 济南: 济南大学, 2013. |
[ Zhang Dongsheng. Study on Water Cycle Regularity Based on Envrionmental Isotope in Jinxiuchuan Basin[D]. Jinan: University of Jinan, 2013. ] | |
[42] | 于津生, 张鸿斌, 虞福基, 等. 西藏东部大气降水氧同位素组成特征[J]. 地球化学, 1980(2): 113-121. |
[ Yu Jinsheng, Zhang Hongbin, Yu Fuji, et al. Oxygen isotopic composition of meteoric water in the eastern part of Xizang[J]. Geochimica, 1980(2): 113-121. ] | |
[43] | 田立德, 姚檀栋, 孙维贞, 等. 青藏高原中部水蒸发过程中的氧稳定同位素变化[J]. 冰川冻土, 2000, 22(2): 159-164. |
[ Tian Lide, Yao Tandong, Sun Weizhen, et al. Study on stable isotope fractionation during water evaporation in the middle of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2000, 22(2): 159-164. ] | |
[44] | 王贺, 李占斌, 马波, 等. 黄土高原丘陵沟壑区不同水体间转化特征--以韭园沟流域为例[J]. 中国水土保持科学, 2016, 14(3): 19-25. |
[ Wang He, Li Zhanbin, Ma Bo, et al. Characteristics of waters transformation in the hilly and gully regions of the Loess Plateau: A case study of the Jiuyuangou Watershed[J]. Science of Soil and Water Conservation, 2016, 14(3): 19-25. ] | |
[45] | 喻生波, 屈君霞. 苏干湖盆地地下水氢氧稳定同位素特征及其意义[J]. 干旱区资源与环境, 2021, 35 (1): 169-175. |
[ Yu Shengbo, Qu Junxia. Characteristics and significance of stable hydrogen and oxygen isotopes in groundwater of Sugan Lake basin[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 169-175. ] | |
[46] | 刘芳, 曹广超, 曹生奎, 等. 祁连山南坡水体氢氧稳定同位素特征研究[J]. 干旱区研究, 2020, 37(5): 1116-1123. |
[ Liu Fang, Cao Guangchao, Cao Shengkui, et al. Hydrogen and oxygen isotope characteristics of water bodies on the southern slope of the Qilian Mountains[J]. Arid Zone Research, 2020, 37(5): 1116-1123. ] | |
[47] | 朱建佳, 陈辉, 巩国丽. 柴达木盆地东部降水氢氧同位素特征与水汽来源[J]. 环境科学, 2015, 36(8): 2784-2790. |
[ Zhu Jianjia, Chen Hui, Gong Guoli. Hydrogen and oxygen isotopic compositions of precipitation and its water vapor sources in eastern Qaidam Basin[J]. Environmental Science, 2015, 36(8): 2784-2790. ] | |
[48] | 胡海英, 包为民, 王涛, 等. 水体蒸发中瑞利分馏公式的模拟及实验验证[J]. 水利学报, 2007(增刊): 314-317. |
[ Hu Haiying, Bao Weimin, Wang Tao, et al. Derivation of rayleigh fractionation formula and its experiment study in water evaporation[J]. Journal of Hydraulic Engineering, 2007(Suppl.): 314-317. ] |
[1] | WANG Nana,HAN Lei,LIU Lili,PENG Ling,ZHOU Peng,Ma Yunlei,Ma Jun. Water vapor transport mechanisms for varied precipitation grades during the summer half-year in Yinchuan Plain [J]. Arid Zone Research, 2023, 40(9): 1404-1413. |
[2] | JIANG Lei,ZHAO Yi,ZHANG Pengwei,HE Liang,BAI Xiang. Study on influence degree of phreatic evaporation based on hydrogen and oxygen isotope characteristics [J]. Arid Zone Research, 2022, 39(6): 1793-1800. |
[3] | XIA Yijie,WANG Shengjie,ZHANG Mingjun. Spatiotemporal variations of stable hydrogen and oxygen isotopes in Xinjiang tap water [J]. Arid Zone Research, 2022, 39(3): 810-819. |
[4] | CHENG Mengyuan,CAO Guangchao,ZHAO Meiliang,DIAO Erlong,HE Qixin,GAO Siyuan,QIU Xunxun,CHENG Guo. Temporal and spatial variation characteristics and influencial factors of soil moisture in the Xiangride-Qaidam River Basin [J]. Arid Zone Research, 2022, 39(2): 615-624. |
[5] | LI Pingping,WANG Xiaodan,CHEN Hailong. Study on the hydraulic connection between the Sugan Lake Wetland and the Kuitunnuoer Wetland [J]. Arid Zone Research, 2022, 39(2): 429-435. |
[6] | LEI Shijun,WANG Shengjie,ZHU Xiaofan,ZHANG Mingjun. Simulation of stable hydrogen and oxygen isotopes in atmospheric water vapor based on an evaporation pan experiment [J]. Arid Zone Research, 2022, 39(1): 21-29. |
|