Arid Zone Research ›› 2022, Vol. 39 ›› Issue (3): 810-819.doi: 10.13866/j.azr.2022.03.14
Previous Articles Next Articles
XIA Yijie1,2(),WANG Shengjie1,2(
),ZHANG Mingjun1,2
Received:
2021-08-25
Revised:
2021-12-29
Online:
2022-05-15
Published:
2022-05-30
Contact:
Shengjie WANG
E-mail:1174573432@qq.com;geowang@126.com
XIA Yijie,WANG Shengjie,ZHANG Mingjun. Spatiotemporal variations of stable hydrogen and oxygen isotopes in Xinjiang tap water[J].Arid Zone Research, 2022, 39(3): 810-819.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Monthly variations of δ2H, δ18O and d of tap water in Xinjiang"
月份 | δ2H/‰ | δ18O/‰ | d/‰ | |||||
---|---|---|---|---|---|---|---|---|
北疆 | 南疆 | 北疆 | 南疆 | 北疆 | 南疆 | |||
1 | -81.5 | -66.5 | -11.7 | -10.1 | 11.8 | 14.4 | ||
2 | -81.1 | -66.1 | -11.9 | -10.1 | 13.8 | 15.0 | ||
3 | -80.0 | -66.4 | -11.6 | -10.2 | 13.2 | 15.0 | ||
4 | -80.3 | -64.5 | -11.9 | -9.9 | 14.9 | 14.6 | ||
5 | -80.2 | -64.2 | -11.6 | -9.7 | 12.7 | 13.5 | ||
6 | -80.2 | -65.9 | -11.8 | -10.0 | 13.5 | 13.7 | ||
7 | -81.3 | -66.9 | -12.0 | -10.1 | 13.9 | 14.2 | ||
8 | -82.5 | -65.6 | -12.1 | -10.1 | 13.7 | 15.2 | ||
9 | -81.7 | -66.2 | -12 | -10.2 | 14.4 | 15.3 | ||
10 | -81.1 | -68.0 | -11.9 | -10.4 | 13.3 | 15.0 | ||
11 | -80.3 | -65.9 | -11.7 | -10.0 | 12.8 | 14.0 | ||
12 | -82.2 | -66.1 | -12.0 | -10.0 | 13.6 | 14.1 |
[1] |
Bowen G J, Cai Z, Fiorella R P, et al. Isotopes in the water cycle: regional-to global-scale patterns and applications[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 453-479.
doi: 10.1146/annurev-earth-053018-060220 |
[2] |
Zhang M J, Wang S J. A review of precipitation isotope studies in China: Basic pattern and hydrological process[J]. Journal of Geographical Sciences, 2016, 26(7): 921-938.
doi: 10.1007/s11442-016-1307-y |
[3] |
Sprenger M, Tetzlaff D, Soulsby C. Soil water stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone[J]. Hydrology and Earth System Sciences, 2017, 21(7): 3839-3858.
doi: 10.5194/hess-21-3839-2017 |
[4] |
Galewsky J, Steen-Larsen H C, Field R D, et al. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle[J]. Reviews of Geophysics, 2016, 54(4): 809-865.
doi: 10.1002/2015rg000512 pmid: 32661517 |
[5] |
Ehleringer J R, Barnette J E, Jameel Y, et al. Urban water: A new frontier in isotope hydrology[J]. Isotopes in Environmental and Health Studies, 2016, 52(4-5): 477-486.
doi: 10.1080/10256016.2016.1171217 pmid: 27142528 |
[6] |
Leslie D, Welch K, Lyons W B. Domestic water supply dynamics using stable isotopes δ18O, δD, and d-excess[J]. Journal of Water Resource and Protection, 2014, 6(16): 1517.
doi: 10.4236/jwarp.2014.616139 |
[7] | Bowen G J, Ehleringer J R, Chesson L A, et al. Stable isotope ratios of tap water in the contiguous United States[J]. Water Resources Research, 2007, 43(3): W03419. |
[8] |
West A G, February E C, Bowen G J. Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in ground water and tap water across South Africa[J]. Journal of Geochemical Exploration, 2014, 145: 213-222.
doi: 10.1016/j.gexplo.2014.06.009 |
[9] |
Zhao S H, Hu C H, Tian F Q, et al. Divergence of stable isotopes in tap water across China[J]. Scientific Reports, 2017, 7(1): 43653.
doi: 10.1038/srep43653 |
[10] |
De Wet R F, West A G, Harris C. Seasonal variation in tap water δ2H and δ18O isotopes reveals two tap water worlds[J]. Scientific Reports, 2020, 10(1): 13544.
doi: 10.1038/s41598-020-70317-2 |
[11] |
Nagode K, Kanduč T, Zuliani T, et al. Daily fluctuations in the isotope and elemental composition of tap water in Ljubljana, Slovenia[J]. Water, 2021, 13(11): 1451.
doi: 10.3390/w13111451 |
[12] |
Ammer S T M, Bartelink E J, Vollner J M, et al. Spatial distributions of oxygen stable isotope ratios in tap water from Mexico for region of origin predictions of unidentified border crossers[J]. Journal of Forensic Sciences, 2020, 65(4): 1049-1055.
doi: 10.1111/1556-4029.14283 |
[13] | 张兵, 李军, 曹佳蕊, 等. 生活水源的稳定氢氧同位素和水化学特征--以天津市为例[J]. 南水北调与水利科技, 2020, 18(6): 122-129. |
[ Zhang Bing, Li Jun, Cao Jiarui, et al. Stable hydrogen and oxygen isotopes and hydrochemical characteristics of domestic water source: A case study of Tianjin[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(6): 122-129. ] | |
[14] |
Du M X, Zhang M J, Wang S J, et al. Stable isotope ratios in tap water of a riverside city in a semi-arid climate: An application to water source determination[J]. Water, 2019, 11(7): 1441.
doi: 10.3390/w11071441 |
[15] |
Good S P, Kennedy C D, Stalker J C, et al. Patterns of local and nonlocal water resource use across the western US determined via stable isotope intercomparisons[J]. Water Resources Research, 2014, 50(10): 8034-8049.
doi: 10.1002/2014WR015884 |
[16] |
Tipple B J, Jameel Y, Chau T H, et al. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area’s water system and adjustments during a major drought[J]. Water Research, 2017, 119: 212-224.
doi: S0043-1354(17)30288-9 pmid: 28463769 |
[17] |
Jameel Y, Brewer S, Good S P, et al. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area[J]. Water Resources Research, 2016, 52(8): 5891-5910.
doi: 10.1002/2016WR019104 |
[18] |
Wang S J, Zhang M J, Bowen G J, et al. Water source signatures in the spatial and seasonal isotope variation of Chinese tap waters[J]. Water Resources Research, 2018, 54(11): 9131-9143.
doi: 10.1029/2018WR023091 |
[19] |
Du M X, Zhang M J, Wang S J, et al. Stable isotope reveals tap water source under different water supply modes in the eastern margin of the Qinghai-Tibet Plateau[J]. Water, 2019, 11(12): 2578.
doi: 10.3390/w11122578 |
[20] |
Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
doi: 10.3402/tellusa.v16i4.8993 |
[21] |
Bowen G J, Wilkinson B H. Spatial distribution of δ18O in meteoric precipitation[J]. Geology, 2002, 30(4): 315-318.
doi: 10.1130/0091-7613(2002)030<0315:SDOOIM>2.0.CO;2 |
[22] |
Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
pmid: 17814749 |
[23] |
Liu J R, Song X F, Yuan G F, et al. Stable isotopic compositions of precipitation in China[J]. Tellus B: Chemical and Physical Meteorology, 2014, 66(1): 22567.
doi: 10.3402/tellusb.v66.22567 |
[24] | 李小飞, 张明军, 李亚举, 等. 西北干旱区降水中δ18O变化特征及其水汽输送[J]. 环境科学, 2012, 33(3): 711-719. |
[ Li Xiaofei, Zhang Mingjun, Li Yaju, et al. Characteristics of δ18O in precipitation and moisture transports over the arid region in Northwest China[J]. Environmental Science, 2012, 33(3): 711-719. ] | |
[25] |
Wang S J, Zhang M J, Hughes C E, et al. Factors controlling stable isotope composition of precipitation in arid conditions: An observation network in the Tianshan Mountains, Central Asia[J]. Tellus B: Chemical and Physical Meteorology, 2016, 68(1): 26206.
doi: 10.3402/tellusb.v68.26206 |
[26] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002 |
[ Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26. ]
doi: 10.11821/dlxb201701002 |
|
[27] |
Sokratov S A, Golubev V N. Snow isotopic content change by sublimation[J]. Journal of Glaciology, 2009, 55(193): 823-828.
doi: 10.3189/002214309790152456 |
[28] | Yao S B, Jiang D B, Zhang Z S. Lagrangian simulations of moisture sources for Chinese Xinjiang precipitation during 1979-2018[J]. International Journal of Climatology, 2021, 41(S1): E216-E232. |
[29] | Tan H B, Zhang Y, Rao W B, et al. Rapid groundwater circulation inferred from temporal water dynamics and isotopes in an arid system[J]. Hydrological Processes, 2021, 35(6): e14225. |
[30] | 新疆维吾尔自治区统计局. 新疆统计年鉴2020[M]. 北京: 中国统计出版社, 2020. |
[ Statistics Bureau of Xinjiang Uygur Autonomous Region. Xinjiang Statistical Yearbook 2020[M]. Beijing: China Statistics Press, 2020. ] | |
[31] | Lloyd C T, Sorichetta A, Tatem A J. High resolution global gridded data for use in population studies[J]. Scientific Data, 2017, 4(1): 1-17. |
[32] | 曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869. |
[ Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review[J]. Arid Zone Research, 2020, 37(4): 857-869. ] |
[1] | ZHANG Bin, ZHENG Xinjun, WANG Yugang, TANG Lisong, LI Yan, DU Lan, TIAN Shengchuan. Changes in the salt content of the plow layer soil during cultivation from 1990 to 2022 on the northern slope of the Tianshan Mountains [J]. Arid Zone Research, 2024, 41(9): 1435-1445. |
[2] | SUN Linlin, LIU Qiong, HUANG Guan, CHEN Yonghang, WEI Xin, GUO Yulin, ZHANG Taixi, GAO Tianyi, XU Yunhong. Analysis of surface solar radiation under different cloud conditions in Xinjiang and the surrounding “Belt and Road” regions [J]. Arid Zone Research, 2024, 41(9): 1480-1490. |
[3] | YUAN Zheng, ZHANG Zhigao, YAN Jin, LIU Jiayi, HU Zhuyu, WANG Yun, CAI Maotang. Spatiotemporal characteristics of different grades of precipitation in Yellow River Basin from 1960 to 2020 [J]. Arid Zone Research, 2024, 41(8): 1259-1271. |
[4] | JIAN Zhengbo, LUO Hao, SHAN Nana. A study on the spatial and temporal evolution and carbon effects of production-living-ecological in Xinjiang under carbon peak and carbon neutrality goals [J]. Arid Zone Research, 2024, 41(7): 1238-1248. |
[5] | LIU Huaqing, WANG Bo, JIA Yanyan, XIE Xinran, ZHANG Wei. Characterization of the freezing injury to Juglans regia at different slope positions in the West Tianshan valley of Xinjiang, China [J]. Arid Zone Research, 2024, 41(6): 1079-1088. |
[6] | MA Yuanzhi, QIN Xiaolin, LING Hongbo, YAN Junjie, ZHANG Guangpeng. Spatio-temporal characteristics and trends of area changes in the small and medium-sized lakes in Xinjiang, China, from 1991 to 2020 [J]. Arid Zone Research, 2024, 41(6): 905-916. |
[7] | ZHANG Haozhe, XUE Yayong, MA Yuanyuan, XUE Guoxuan. Carbon sequestration potential of oasis ecosystem in Xinjiang, China [J]. Arid Zone Research, 2024, 41(6): 998-1009. |
[8] | XU Chaojie, DOU Yan, MENG Qilin. Prediction of the standardized precipitation evapotranspiration index in the Xinjiang region using the EMD-GWO-LSTM model [J]. Arid Zone Research, 2024, 41(4): 527-539. |
[9] | SI Qi, FAN Haoran, DONG Wenming, LIU Xinping. Landscape ecological risk assessment and prediction for the Yarkant River Basin, Xinjiang, China [J]. Arid Zone Research, 2024, 41(4): 684-696. |
[10] | BAO Jiayu, LI Xianglong, HU Qiwen, LI Tao. Spatiotemporal characteristics of carbon emissions from energy consumption and the approach to energy structure adjustment in Xinjiang [J]. Arid Zone Research, 2024, 41(3): 490-498. |
[11] | YAO Junqiang. Change in atmospheric and surface water resource in Xinjiang [J]. Arid Zone Research, 2024, 41(2): 181-190. |
[12] | WU Mingjiang, QIU Juan, ZHENG Feng, LING Xiaobo, WANG Xinyu, YANG Yang, YANG Jiaxin, LIU Liqiang. Study on shrub species diversity and niche of wild fruit forest in Xinjiang [J]. Arid Zone Research, 2024, 41(12): 2094-2109. |
[13] | XU Yunhong, LIU Qiong, CHEN Yonghang, WEI Xin, LIU Xin, ZHANG Taixi, SHAO Weiling, YANG Hequn, ZHANG Chengming. Impact of land cover variations on surface albedo in Xinjiang and its surrounding Central Asian region [J]. Arid Zone Research, 2024, 41(10): 1649-1661. |
[14] | JIN Chenyang, DU Hongru. Characteristics of spatial and temporal changes and zoning of cultivated land resilience in Xinjiang [J]. Arid Zone Research, 2024, 41(10): 1778-1788. |
[15] | LI Xiaofeng, HUI Tingting, LI Yaoming, MAO Jiefei, WANG Guangyu, FAN Lianlian. Effects of different grazing management strategies on plant diversity in the mountain grassland of Xinjiang, China [J]. Arid Zone Research, 2024, 41(1): 124-134. |
|