Arid Zone Research ›› 2022, Vol. 39 ›› Issue (3): 810-819.doi: 10.13866/j.azr.2022.03.14
Previous Articles Next Articles
XIA Yijie1,2(),WANG Shengjie1,2(),ZHANG Mingjun1,2
Received:
2021-08-25
Revised:
2021-12-29
Online:
2022-05-15
Published:
2022-05-30
Contact:
Shengjie WANG
E-mail:1174573432@qq.com;geowang@126.com
XIA Yijie,WANG Shengjie,ZHANG Mingjun. Spatiotemporal variations of stable hydrogen and oxygen isotopes in Xinjiang tap water[J].Arid Zone Research, 2022, 39(3): 810-819.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Monthly variations of δ2H, δ18O and d of tap water in Xinjiang"
月份 | δ2H/‰ | δ18O/‰ | d/‰ | |||||
---|---|---|---|---|---|---|---|---|
北疆 | 南疆 | 北疆 | 南疆 | 北疆 | 南疆 | |||
1 | -81.5 | -66.5 | -11.7 | -10.1 | 11.8 | 14.4 | ||
2 | -81.1 | -66.1 | -11.9 | -10.1 | 13.8 | 15.0 | ||
3 | -80.0 | -66.4 | -11.6 | -10.2 | 13.2 | 15.0 | ||
4 | -80.3 | -64.5 | -11.9 | -9.9 | 14.9 | 14.6 | ||
5 | -80.2 | -64.2 | -11.6 | -9.7 | 12.7 | 13.5 | ||
6 | -80.2 | -65.9 | -11.8 | -10.0 | 13.5 | 13.7 | ||
7 | -81.3 | -66.9 | -12.0 | -10.1 | 13.9 | 14.2 | ||
8 | -82.5 | -65.6 | -12.1 | -10.1 | 13.7 | 15.2 | ||
9 | -81.7 | -66.2 | -12 | -10.2 | 14.4 | 15.3 | ||
10 | -81.1 | -68.0 | -11.9 | -10.4 | 13.3 | 15.0 | ||
11 | -80.3 | -65.9 | -11.7 | -10.0 | 12.8 | 14.0 | ||
12 | -82.2 | -66.1 | -12.0 | -10.0 | 13.6 | 14.1 |
[1] |
Bowen G J, Cai Z, Fiorella R P, et al. Isotopes in the water cycle: regional-to global-scale patterns and applications[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 453-479.
doi: 10.1146/annurev-earth-053018-060220 |
[2] |
Zhang M J, Wang S J. A review of precipitation isotope studies in China: Basic pattern and hydrological process[J]. Journal of Geographical Sciences, 2016, 26(7): 921-938.
doi: 10.1007/s11442-016-1307-y |
[3] |
Sprenger M, Tetzlaff D, Soulsby C. Soil water stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone[J]. Hydrology and Earth System Sciences, 2017, 21(7): 3839-3858.
doi: 10.5194/hess-21-3839-2017 |
[4] |
Galewsky J, Steen-Larsen H C, Field R D, et al. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle[J]. Reviews of Geophysics, 2016, 54(4): 809-865.
doi: 10.1002/2015rg000512 pmid: 32661517 |
[5] |
Ehleringer J R, Barnette J E, Jameel Y, et al. Urban water: A new frontier in isotope hydrology[J]. Isotopes in Environmental and Health Studies, 2016, 52(4-5): 477-486.
doi: 10.1080/10256016.2016.1171217 pmid: 27142528 |
[6] |
Leslie D, Welch K, Lyons W B. Domestic water supply dynamics using stable isotopes δ18O, δD, and d-excess[J]. Journal of Water Resource and Protection, 2014, 6(16): 1517.
doi: 10.4236/jwarp.2014.616139 |
[7] | Bowen G J, Ehleringer J R, Chesson L A, et al. Stable isotope ratios of tap water in the contiguous United States[J]. Water Resources Research, 2007, 43(3): W03419. |
[8] |
West A G, February E C, Bowen G J. Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in ground water and tap water across South Africa[J]. Journal of Geochemical Exploration, 2014, 145: 213-222.
doi: 10.1016/j.gexplo.2014.06.009 |
[9] |
Zhao S H, Hu C H, Tian F Q, et al. Divergence of stable isotopes in tap water across China[J]. Scientific Reports, 2017, 7(1): 43653.
doi: 10.1038/srep43653 |
[10] |
De Wet R F, West A G, Harris C. Seasonal variation in tap water δ2H and δ18O isotopes reveals two tap water worlds[J]. Scientific Reports, 2020, 10(1): 13544.
doi: 10.1038/s41598-020-70317-2 |
[11] |
Nagode K, Kanduč T, Zuliani T, et al. Daily fluctuations in the isotope and elemental composition of tap water in Ljubljana, Slovenia[J]. Water, 2021, 13(11): 1451.
doi: 10.3390/w13111451 |
[12] |
Ammer S T M, Bartelink E J, Vollner J M, et al. Spatial distributions of oxygen stable isotope ratios in tap water from Mexico for region of origin predictions of unidentified border crossers[J]. Journal of Forensic Sciences, 2020, 65(4): 1049-1055.
doi: 10.1111/1556-4029.14283 |
[13] | 张兵, 李军, 曹佳蕊, 等. 生活水源的稳定氢氧同位素和水化学特征--以天津市为例[J]. 南水北调与水利科技, 2020, 18(6): 122-129. |
[ Zhang Bing, Li Jun, Cao Jiarui, et al. Stable hydrogen and oxygen isotopes and hydrochemical characteristics of domestic water source: A case study of Tianjin[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(6): 122-129. ] | |
[14] |
Du M X, Zhang M J, Wang S J, et al. Stable isotope ratios in tap water of a riverside city in a semi-arid climate: An application to water source determination[J]. Water, 2019, 11(7): 1441.
doi: 10.3390/w11071441 |
[15] |
Good S P, Kennedy C D, Stalker J C, et al. Patterns of local and nonlocal water resource use across the western US determined via stable isotope intercomparisons[J]. Water Resources Research, 2014, 50(10): 8034-8049.
doi: 10.1002/2014WR015884 |
[16] |
Tipple B J, Jameel Y, Chau T H, et al. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area’s water system and adjustments during a major drought[J]. Water Research, 2017, 119: 212-224.
doi: S0043-1354(17)30288-9 pmid: 28463769 |
[17] |
Jameel Y, Brewer S, Good S P, et al. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area[J]. Water Resources Research, 2016, 52(8): 5891-5910.
doi: 10.1002/2016WR019104 |
[18] |
Wang S J, Zhang M J, Bowen G J, et al. Water source signatures in the spatial and seasonal isotope variation of Chinese tap waters[J]. Water Resources Research, 2018, 54(11): 9131-9143.
doi: 10.1029/2018WR023091 |
[19] |
Du M X, Zhang M J, Wang S J, et al. Stable isotope reveals tap water source under different water supply modes in the eastern margin of the Qinghai-Tibet Plateau[J]. Water, 2019, 11(12): 2578.
doi: 10.3390/w11122578 |
[20] |
Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
doi: 10.3402/tellusa.v16i4.8993 |
[21] |
Bowen G J, Wilkinson B H. Spatial distribution of δ18O in meteoric precipitation[J]. Geology, 2002, 30(4): 315-318.
doi: 10.1130/0091-7613(2002)030<0315:SDOOIM>2.0.CO;2 |
[22] |
Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
pmid: 17814749 |
[23] |
Liu J R, Song X F, Yuan G F, et al. Stable isotopic compositions of precipitation in China[J]. Tellus B: Chemical and Physical Meteorology, 2014, 66(1): 22567.
doi: 10.3402/tellusb.v66.22567 |
[24] | 李小飞, 张明军, 李亚举, 等. 西北干旱区降水中δ18O变化特征及其水汽输送[J]. 环境科学, 2012, 33(3): 711-719. |
[ Li Xiaofei, Zhang Mingjun, Li Yaju, et al. Characteristics of δ18O in precipitation and moisture transports over the arid region in Northwest China[J]. Environmental Science, 2012, 33(3): 711-719. ] | |
[25] |
Wang S J, Zhang M J, Hughes C E, et al. Factors controlling stable isotope composition of precipitation in arid conditions: An observation network in the Tianshan Mountains, Central Asia[J]. Tellus B: Chemical and Physical Meteorology, 2016, 68(1): 26206.
doi: 10.3402/tellusb.v68.26206 |
[26] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002 |
[ Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26. ]
doi: 10.11821/dlxb201701002 |
|
[27] |
Sokratov S A, Golubev V N. Snow isotopic content change by sublimation[J]. Journal of Glaciology, 2009, 55(193): 823-828.
doi: 10.3189/002214309790152456 |
[28] | Yao S B, Jiang D B, Zhang Z S. Lagrangian simulations of moisture sources for Chinese Xinjiang precipitation during 1979-2018[J]. International Journal of Climatology, 2021, 41(S1): E216-E232. |
[29] | Tan H B, Zhang Y, Rao W B, et al. Rapid groundwater circulation inferred from temporal water dynamics and isotopes in an arid system[J]. Hydrological Processes, 2021, 35(6): e14225. |
[30] | 新疆维吾尔自治区统计局. 新疆统计年鉴2020[M]. 北京: 中国统计出版社, 2020. |
[ Statistics Bureau of Xinjiang Uygur Autonomous Region. Xinjiang Statistical Yearbook 2020[M]. Beijing: China Statistics Press, 2020. ] | |
[31] | Lloyd C T, Sorichetta A, Tatem A J. High resolution global gridded data for use in population studies[J]. Scientific Data, 2017, 4(1): 1-17. |
[32] | 曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869. |
[ Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review[J]. Arid Zone Research, 2020, 37(4): 857-869. ] |
[1] | LI Xiaofeng, HUI Tingting, LI Yaoming, MAO Jiefei, WANG Guangyu, FAN Lianlian. Effects of different grazing management strategies on plant diversity in the mountain grassland of Xinjiang, China [J]. Arid Zone Research, 2024, 41(1): 124-134. |
[2] | WANG Nana,HAN Lei,LIU Lili,PENG Ling,ZHOU Peng,Ma Yunlei,Ma Jun. Water vapor transport mechanisms for varied precipitation grades during the summer half-year in Yinchuan Plain [J]. Arid Zone Research, 2023, 40(9): 1404-1413. |
[3] | WANG Xiang, LYU Haishen, ZHU Yonghua, GUO Chenyu. Application and comparison of two channel flood routing methods in Xinjiang mountainous areas [J]. Arid Zone Research, 2023, 40(8): 1240-1247. |
[4] | WANG Chao, MA Zhancang, PAN Chengnan, WU Xingyue, SONG Wendan, YAN Ping. New records of Amaranthus in Xinjiang [J]. Arid Zone Research, 2023, 40(8): 1280-1288. |
[5] | Gulistan ANWAR, Turgun NURDIN, Dilhumar ABDUKERIM, Mamtimin SULAYMAN. New records of mosses of Leskeaceae to Xinjiang [J]. Arid Zone Research, 2023, 40(8): 1289-1293. |
[6] | LI Hong, LI Zhongqin, CHEN Puchen, PENG Jiajia. Spatio-temporal variation of snow cover in Altai Mountains of Xinjiang in recent 20 years and its influencing factors [J]. Arid Zone Research, 2023, 40(7): 1040-1051. |
[7] | XU Junli, HAN Haidong, WANG Jian. Recharge sources and potential source areas of atmospheric PM2.5 in Xinjiang [J]. Arid Zone Research, 2023, 40(6): 874-884. |
[8] | XUE Yibo, HUANG Shuangyan, ZHANG Xiaoxiao, LEI Jiaqiang, LI Shengyu. Study on the strong winter airborne dustfall mixed rain and snow events in Xinjiang, China in 2018 [J]. Arid Zone Research, 2023, 40(5): 681-690. |
[9] | ZHAO Keming, SUN Mingjing, LI Xia, SHI Junjie, AN Dawei, XU Tingting. Comparison of the distribution and applicability of two typical atmospheric diffusion indices in Xinjiang [J]. Arid Zone Research, 2023, 40(5): 691-702. |
[10] | ZHAO Yuzhi,YANG Jianjun. Spatio-temporal pattern of water resource carrying capacity, coupling and coordination of subsystems in southern Xinjiang [J]. Arid Zone Research, 2023, 40(2): 213-223. |
[11] | DONG Hanlin, WANG Wenting, XIE Yun, Aydana YESINALI, JIANG Yuantian, XU Jiaqi. Climate dry-wet conditions, changes, and their driving factors in Xinjiang [J]. Arid Zone Research, 2023, 40(12): 1875-1884. |
[12] | WU Xiaodan,LUO Min,MENG Fanhao,SA Chula,YIN Chaohua,BAO Yuhai. New characteristics of spatio-temporal evolution of extreme climate events in Xinjiang under the background of warm and humid climate [J]. Arid Zone Research, 2022, 39(6): 1695-1705. |
[13] | JIANG Lei,ZHAO Yi,ZHANG Pengwei,HE Liang,BAI Xiang. Study on influence degree of phreatic evaporation based on hydrogen and oxygen isotope characteristics [J]. Arid Zone Research, 2022, 39(6): 1793-1800. |
[14] | Mamtimin SULAYMAN,Alanur KAHAR,LIANG Lingwei,Mamurbieke MAKAN,WANG Pengjun. Discovery of a moss family Schistostegaceae in Xinjiang, China [J]. Arid Zone Research, 2022, 39(6): 1852-1855. |
[15] | Gulistan ANWAR,WANG Pengjun,Alanur KAHAR,Mamtimin SULAYMAN. Buxbaumia viridis, a newly recorded species in Xinjiang, China and its historical correction in China’s distribution [J]. Arid Zone Research, 2022, 39(6): 1856-1861. |
|