[1] |
Steffen W, Rockström J, Richardson K, et al. Trajectories of the earth system in the Anthropocene[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 8252-8259.
doi: 10.1073/pnas.1810141115
|
[2] |
Dawson T P, Jackson S T, House J I, et al. Beyond predictions: Biodiversity conservation in a changing climate[J]. Science, 2011, 332(6025): 53-58.
doi: 10.1126/science.1200303
|
[3] |
Urban M C, Bocedi G, Hendry A P, et al. Improving the forecast for biodiversity under climate change[J]. Science, 2016, 353(6304): 1-10.
|
[4] |
Foden W B, Young B E, Akçakaya H R, et al. Climate change vulnerability assessment of species[J]. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10(1): e551.
|
[5] |
Fordham D A, Jackson S T, Brown S C, et al. Using paleo-archives to safeguard biodiversity under climate change[J]. Science, 2020, 369: eabc5654.
|
[6] |
Weng C Y, Hooghiemstra H, Duivenvoorden J F. Challenges in estimating past plant diversity from fossil pollen data: Statistical assessment, problems, and possible solutions[J]. Divers Distribution, 2006, 12: 310-318.
doi: 10.1111/j.1366-9516.2006.00230.x
|
[7] |
Liu H Y, Park Williams A, Allen C D, et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia[J]. Global Change Biology, 2013, 19: 2500-2510.
doi: 10.1111/gcb.12217
|
[8] |
Weng C, Hooghiemstra H, Duivenvoorden J F. Response of pollen diversity to the climate-driven altitudinal shift of vegetation in the Colombian Andes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1478): 253-262.
doi: 10.1098/rstb.2006.1985
|
[9] |
Franco A M, Hill J K, Kitschke C, et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries[J]. Global Change Biology, 2006, 12: 1545-1553.
doi: 10.1111/j.1365-2486.2006.01180.x
|
[10] |
Huang J P, Yu H, Guan X D, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6: 166-171.
doi: 10.1038/nclimate2837
|
[11] |
Zhang D L, Feng Z D. Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records[J]. Earth-Science Reviews, 2018, 185: 847-869.
doi: 10.1016/j.earscirev.2018.08.007
|
[12] |
Chen F H, Yu Z, Yang M, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27: 351-364.
doi: 10.1016/j.quascirev.2007.10.017
|
[13] |
Cheng Y, Liu H, Wang H, et al. Climate-driven Holocene migration of forest-steppe ecotone in the Tien Mountains[J]. Forests, 2020, 11(11): 1139.
doi: 10.3390/f11111139
|
[14] |
张芸, 孔昭宸, 阎顺, 等. 新疆天山北坡地区中晚全新世古生物多样性特征[J]. 植物生态学报, 2005, 29(5): 836-844.
|
|
[ Zhang Yun, Kong Zhaocheng, Yan Shun, et al. Paleo-biodiversity at the northern piedmont of Tianshan Mountains in Xinjiang during the Middle to Late Holocene[J]. Acta Phytoecologica Sinica, 2005, 29(5): 836-844. ]
|
[15] |
Zhang D L, Chen X, Li Y M, et al. Holocene moisture variations in the arid Central Asia: New evidence from the southern Altai Mountains of China[J]. Science of the Total Environment, 2020, 735: 139545.
|
[16] |
Wang W, Zhang D L. Holocene vegetation evolution and climatic dynamics inferred from an ombrotrophic peat sequence in the southern Altai Mountains within China[J]. Global and Planetary Change, 2019, 172: 10-22.
|
[17] |
Zhang D L, Chen X, Li Y M, et al. Holocene vegetation dynamics and associated climate changes in the Altai Mountains of the arid Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109744.
doi: 10.1016/j.palaeo.2020.109744
|
[18] |
Feng Z D, Sun A Z, Abdusalih N, et al. Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene[J]. Holocene, 2017, 27(5): 683-693.
doi: 10.1177/0959683616670469
|
[19] |
Huang X Z, Peng W, Rudaya N, et al. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas[J]. Geophysical Research Letters, 2018, 45(13): 6628-6636.
doi: 10.1029/2018GL078028
|
[20] |
Zhang D L, Yang Y P, Ran M, et al. Vegetation dynamics and its response to climate change during the past 2000 years in the Altai Mountains, northwestern China[J]. Frontiers of Earth Science, 2021, doi.10.1007/s11707-021-0906-9
doi: doi.10.1007/s11707-021-0906-9
|
[21] |
Zhang D L, Lan B, Yang Y P. Comparison of precipitation variations at different time scales in the northern and southern Altai Mountains[J]. Acta Geographica Sinica, 2017, 72(9): 1569-1579.
|
[22] |
Blyakharchuk T, Chernova N. Vegetation and climate in the western Sayan Mts according to pollen data from Lugovoe Mire as a background for prehistoric cultural change in southern Middle Siberia[J]. Quaternary Science Reviews, 2013, 75: 22-42.
doi: 10.1016/j.quascirev.2013.05.017
|
[23] |
袁国映. 阿尔泰山西部地区的垂直自然带[J]. 地理学报, 1986, 41(1): 32-40.
doi: 10.11821/xb198601004
|
|
[ Yuan Guoying. The vertical zonation of the western Altay MTS[J]. Acta Geographica Sinica, 1986, 41(1): 32-40. ]
doi: 10.11821/xb198601004
|
[24] |
李泉, 赵艳. 基于孢粉组合定量重建古植物多样性的方法与进展[J]. 第四纪研究, 2018, 38(4): 821-829.
|
|
[ Li Quan, Zhao Yan. Quantitative methods and progress of paleofloristic diversity reconstruction based on pollen assemblages[J]. Quaternary Sciences, 2018, 38(4): 821-829. ]
|
[25] |
Prentice I, Cramer W, Harrison S, et al. A global Biome model based on plant physiology and dominance, soil properties and climate[J]. Journal of Biogeograph, 1992, 19(2): 117-134.
doi: 10.2307/2845499
|
[26] |
Prentice I, Guiot J, Huntley B, et al. Reconstructing biomes from palaeoecological data: A general method and its application to European pollen data at 0 and 6 ka[J]. Climate Dynamics, 1996, 12 (3): 185-194.
doi: 10.1007/BF00211617
|
[27] |
Walker M J C, Berkelhammer M, Björck S, et al. Formal subdivision of the Holocene series/epoch: A discussion paper by a working group of INTIMATE (integration of ice core, marine and terrestrial records) and the subcommission on Quaternary stratigraphy (international commission on stratigraphy)[J]. Journal of Quaternary Science, 2012, 27: 649-659.
doi: 10.1002/jqs.2565
|
[28] |
Marcott S, Shakun J, Clark P, et al. A reconstruction of regional and global temperature for the past 11300 years[J]. Science, 2013, 339: 1198-1201.
doi: 10.1126/science.1228026
pmid: 23471405
|
[29] |
Zhang D L, Huang X Z, Liu Q, et al. Holocene fire records and their drivers in the westerlies-dominated Central Asia[J]. Science of the Total Environment, 2022, 833: 155153.
|
[30] |
Bush M B, Silman M R, Urrego D H. 48000 years of climate and forest change in a plant species diversity hot spot[J]. Science, 2004, 303: 827-829.
doi: 10.1126/science.1090795
|
[31] |
Li H, Li Z, Chen Y, et al. Drylands face potential threat of robust drought in the CMIP6 SSPs scenarios[J]. Environmental Research Letters, 2021, 16(11): 114004.
doi: 10.1088/1748-9326/ac2bce
|
[32] |
Hammer O, Harper D A, Ryan P D. Palaeontological statistics software package for education and data analysis[J]. Palaeontologia Electronica, 2001, 4(1): 9.
|
[33] |
Giesecke T, Wolters S, Jahns S, et al. Exploring Holocene changes in palynological richness in northern Europe-Did postglacial immigration matter?[J]. PLoS One, 2012, 7(12): e51624.
doi: 10.1371/journal.pone.0051624
|