[1] |
Pedroni L. Forest ecosystems, forest management and the global carbon cycle[J]. Forest Ecology & Management, 1997, 97(1):91-92.
|
[2] |
Schrter M, Bonn A, Klotz S, et al. Atlas of ecosystem services: Drivers, risks, and societal responses[M]. Berlin: Springer, 2019.
|
[3] |
Rogass C, Kaufmann H. Remote sensing-advanced techniques and platforms[M]. NewYork: Intechopen, 2012.
|
[4] |
Hudak A, Crookston N, Evans J, et al. Nearest neighbour imputation of species-level, plot-scale forest structure attributes from lidar data[J]. Remote Sensing of Environment, 2008, 112:2232-2245.
doi: 10.1016/j.rse.2007.10.009
|
[5] |
Hyyppä J, Hyyppä H, Leckie D, et al. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests[J]. International Journal of Remote Sensing, 2008, 29(5):1339-1336.
doi: 10.1080/01431160701736489
|
[6] |
解金卫, 索志勇, 李真芳, 等. 基于PolInSAR的植被区高精度数字表面模型反演方法[J]. 电子与信息学报, 2019, 41(2):44-52.
|
|
[ Xie Jinwei, Suo Zhiyong, Li Zhenfang, et al. High-precision digital surface model inversion approach in forest region based on PolInSAR[J]. Journal of Electronics & Information Technology, 2019, 41(2):44-52. ]
|
[7] |
Marivi Tello, Victor Cazcarra-Bes, Matteo Pardini, et al. Forest structure characterization from SAR tomography at L-band[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2018, 11(10):3402-3414.
|
[8] |
蔡耀通, 林辉, 孙华, 等. 基于TanDEM-X数据的林分平均高反演方法研究[J]. 西南林业大学学报, 2019, 39(5):110-117.
|
|
[ Cai Yaotong, Lin Hui, Sun Hua, et al. Stand allocation high inversion method based on TanDEM-X data[J]. Journal of Southwest Forestry University, 2019, 39(5):110-117. ]
|
[9] |
董立新. 林分平均高度卫星遥感新进展[J]. 遥感技术与应用, 2016, 31(5):833-845.
|
|
[ Dong Lixin. New development of forest canopy height remote sensing[J]. Remote Sensing Technology and Application, 2016, 31(5):833-845. ]
|
[10] |
陈曦, 包安明, 古丽·加帕尔, 等. 塔里木河流域生态系统综合检测与评估[M]. 北京: 科学出版社, 2016.
|
|
[ Chen Xi, Bao Anming, Guli Jiapaer. Comprehensive Monitoring and Assessment of Ecosystem in Tarim River Basin[M]. Beijing: Science Press, 2016. ]
|
[11] |
陈亚宁, 张小雷, 祝向民, 等. 新疆塔里木河下游断流河道输水的生态效应分析[J]. 中国科学: 地球科学, 2004, 8(5):475-482.
|
|
[ Chen Yaning, Zhang Xiaolei, Zhu Xiangmin, et al. Analysis on ecological effect of water conveyance in the lower reaches of Tarim River in Xinjiang[J]. Scientia Sinica (Terrae), 2004, 8(5):475-482. ]
|
[12] |
李霞, 侯平, 董新光, 等. 塔里木河下游断流区胡杨密度调查与分析[J]. 新疆农业大学学报, 2003, 26(4):44-47.
|
|
[ Li Xia, Hou Ping, Dong Xinguang, et al. Investigation and analysis on the population density of Populus euphratica in zero flow lower reaches of Tarim River[J]. Journal of Xinjiang Agricultural University, 2003, 26(4):44-47. ]
|
[13] |
朱长明, 李均力, 沈占锋, 等. 基于MODIS密集时间序列数据的塔里木河下游植被活动过程监测[J]. 资源科学, 2019, 41(3):179-188.
|
|
[ Zhu Changming, Li Junli, Shen Zhanfeng, et al. Spatiotemporal dynamics of vegetation activities in the lower reach of the Tarim River based on MODIS intensive time series data[J]. Resources Science, 2019, 41(3):179-188. ]
|
[14] |
黄粤, 包安明, 王士飞, 等. 间歇性输水影响下的2001—2011年塔里木河下游生态环境变化[J]. 地理学报, 2013, 68(9):1251-1262.
doi: 10.11821/dlxb201309008
|
|
[ Huang Yue, Bao Anming, Wang Shifei, et al. Eco-environmental change in the lower Tarim River under the influence of intermittent water transport[J]. Acta Geographica Sinica, 2013, 68(9):1251-1262. ]
doi: 10.11821/dlxb201309008
|
[15] |
管文轲, 韦红, 钟家骅, 等. 塔里木河流域植被覆盖变化的遥感监测[J]. 水土保持通报, 2018, 38(5):244-248, 260.
|
|
[ Guan Wenke, Wei Hong, Zhong Jiahua, et al. Remote sensing monitoring of vegetation cover change in Tarim River basin[J]. Bulletin of Soil and Water Conservation, 2018, 38(5):244-248, 260. ]
|
[16] |
牛婷, 李霞. 塔里木河下游植被恢复遥感模型建立[J]. 国土资源遥感, 2008, 21(2):79-83.
|
|
[ Niu Ting, Li Xia. A remote sensing model for vegetation restoration in the lower valley of the Tarim River[J]. Remote Sensing for Land & Resources, 2008, 21(2):79-83. ]
|
[17] |
Obanawa H S, Hayakawa Y, Saito H, et al. Comparison of DSMs derived from UAV-SFM method and terrestrial laser scanning[J]. Journal of the Japan society of photogrammetry and remote sensing, 2014, 53(2):67-74.
doi: 10.4287/jsprs.53.67
|
[18] |
闫东阳, 明冬萍. 基于自动多种子区域生长的遥感影像面向对象分割方法[J]. 工程科学学报, 2017, 66(11):132-139.
|
|
[ Yan Dongyang, Ming Dongping. Object-oriented remote sensing image segmentation based on automatic multi-seed region growing algorithm[J]. Journal of University of Science and Technology, 2017, 66(11):132-139. ]
|
[19] |
Xu X, Tong X, Plaza A, et al. Using linear spectral unmixing for subpixel mapping of hyperspectral imagery: A quantitative assessment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4):1589-1600.
doi: 10.1109/JSTARS.4609443
|
[20] |
Gudex-Cross D, Pontius J, Adams A. Enhanced forest cover mapping using spectral unmixing and object-based classification of multi-temporal Landsat imagery[J]. Remote Sensing of Environment, 2017, 196:193-204.
doi: 10.1016/j.rse.2017.05.006
|
[21] |
滑永春, 李增元, 高志海. 面向对象分割与混合像元分解相结合提取沙化土地信息[J]. 干旱区研究, 2020, 37(5):254-260.
|
|
[ Hua Yongchun, Li Zengyuan, Gao Zhihai. Extraction of sand information using object-oriented segmentation combined with the decomposition of mixed pixels[J]. Arid Zone Research, 2020, 37(5):254-260. ]
|
[22] |
Yu J, Chen D, Lin Y, et al. Comparison of linear and nonlinear spectral unmixing approaches: A case study with multispectral TM imagery[J]. International Journal Of Remote Sensing, 2017, 38(3-4):773-795.
doi: 10.1080/01431161.2016.1271475
|
[23] |
郄广平. 高分辨率遥感影像的森林结构参数反演[D]. 长沙: 中南林业科技大学, 2011.
|
|
[ Qie Guangping. The Research on Forestry Factor by High-Resolution Remote Sensing Image[D]. Changsha: Central South University of Forestry and Technology, 2011. ]
|
[24] |
Donoghue D N M, Watt P J. Using LiDAR to compare forest height estimates from IKONOS and Landsat ETM+ data in Sitka spruce plantation forests[J]. International Journal of Remote Sensing, 2006, 27(11):2161-2175.
doi: 10.1080/01431160500396493
|
[25] |
Chen G, Hay G J, Castilla G, et al. A multiscale geographic object-based image analysis to estimate lidar-measured forest canopy height using Quick bird imagery[J]. International Journal of Geographical Information Science, 2011, 25(6):877-893.
doi: 10.1080/13658816.2010.496729
|
[26] |
Gomes M F, Maillard P. Using spectral and textural features from Rapid Eye images to estimate age and structural parameters of Cerrado vegetation[J]. International journal of remote sensing, 2015, 36(11-12):3058-3076.
doi: 10.1080/01431161.2015.1055604
|
[27] |
Rodrigues é O, Pinheiro V H A, Liatsis P, et al. Machine learning in the prediction of cardiac epicardial and mediastinal fat volumes[J]. Computers in Biology & Medicine, 2017, 89(10):520-529.
|
[28] |
赵金, 陈曦, 古丽·加帕尔, 等. 塔里木河荒漠植被光谱可分性模拟[J]. 中国沙漠, 2009, 29(2):270-278.
|
|
[ Zhao Jin, Chen Xi, Guli Japaer, et al. Spectral discrimination of desert vegetation int the Tarim basin[J]. Journal of Desert Research, 2009, 29(2):270-278. ]
|
[29] |
胡潭高, 徐俊锋, 张登荣, 等. 自适应阈值的多光谱遥感影像软硬分类方法研究[J]. 光谱学与光谱分析, 2013, 33(4):1038-1042.
|
|
[ Hu Tangao, Xu Junfeng, Zhang Dengrong, et al. Hard and soft classification method of multi-spectral remote sensing image based on adaptive thresholds[J]. Spectroscopy and Spectral Analysis, 2013, 33(4):1038-1042. ]
|
[30] |
陈绪志. 基于线性光谱混合模型的植被丰度遥感信息提取——以梅江流域为例[D]. 南昌: 江西师范大学, 2012.
|
|
[ Chen Xuzhi. Remote Sensing Information Extraction of Vegetation Abundance based on Linear Spectral Mixed model: A case study of Meijiang River Basin[D]. Nanchang: Jiangxi Normal University, 2012. ]
|
[31] |
封静, 季民河, 胡笳. 基于高分分辨遥感的红树林郁闭度光谱混合分析[C]// 第十七届中国遥感大会摘要集. 中国遥感委员会, 2010.
|
|
[ Feng Jing, Ji Minhe, Hu Jia. Spectral mixing analysis of mangrove canopy density based on high resolution remote sensing[C]// Summary of the 17th China Remote Sensing Conference. Chinese National Committee for Remote Sensing, 2010. ]
|
[32] |
Lu Dengsheng, Moran Emilio, Batistella Mateus. Linear mixture model applied to Amazonian vegetation classification[J]. Remote Sensing of Environment, 2003, 87(4):456-469.
doi: 10.1016/j.rse.2002.06.001
|
[33] |
李晓靖. 基于高分影像的面向对象分类与单木树冠提取研究[D]. 北京: 北京林业大学, 2017.
|
|
[ Li Xiaojing. Study on Object-oriented Classification and Individual Tree Crown Extraction based on High Resolution Imagery[D]. Beijing: Beijing Forestry University, 2017. ]
|
[34] |
杨礼. 融合UAV遥感影像与SFM点云的树木识别及参数提取[D]. 焦作: 河南理工大学, 2018.
|
|
[ Yang Li. Tree Parameters Extraction using UAV Remote Sensing Image and SFM Point Cloud[D]. Jiaozuo: Henan Polytechnic University, 2018. ]
|
[35] |
邓潮洲, 张希明, 李利, 等. 塔里木河下游胡杨群落特征及种群结构分析[J]. 中国沙漠, 2010, 30(3):589-595.
|
|
[ Deng Chaozhou, Zhang Ximing, Li Li, et al. Community characteristics and population structure of Populus euphratica Oliv in lower reaches of Tarim River[J]. Journal of Desert Research, 2010, 30(3):589-595. ]
|
[36] |
张绘芳, 李霞. 塔里木河下游胡杨种群空间分布格局分析[J]. 西北植物学报, 2006, 26(10):2125-2130.
|
|
[ Zhang Huifang, Li Xia. Spatial distribution pattern of Populus euphratica populations in the lower reaches of Tarim River[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(10):2125-2130. ]
|