干旱区研究 ›› 2021, Vol. 38 ›› Issue (6): 1546-1555.doi: 10.13866/j.azr.2021.06.06
张文琦1,2(),董少刚1,2(),马铭言1,赵镇1,陈悦1
收稿日期:
2021-03-26
修回日期:
2021-05-08
出版日期:
2021-11-15
发布日期:
2021-11-29
通讯作者:
董少刚
作者简介:
张文琦(1996-),女,硕士研究生,研究方向为水文地质学. E-mail: 基金资助:
ZHANG Wenqi1,2(),DONG Shaogang1,2(),MA Mingyan1,ZHAO Zhen1,CHEN Yue1
Received:
2021-03-26
Revised:
2021-05-08
Online:
2021-11-15
Published:
2021-11-29
Contact:
Shaogang DONG
摘要:
岱海面积日趋萎缩,水质日益恶化,已经对区域生态环境安全造成严重影响。通过水文地质调查、水样采集,结合统计分析、舒卡列夫分类、矿物饱和指数、离子比例分析、氯碱指数等水化学分析方法,对岱海盆地地下水水化学特征及成因进行研究,以期揭示影响岱海区域地下水水环境演化的主要因素。结果表明:(1) 岱海盆地地下水呈弱碱性,水化学类型以HCO3-Ca·Mg型水为主;从盆地边缘到岱海,水化学类型从HCO3-Ca向Cl-Na型过渡,控制水化学成分的作用由溶滤作用向蒸发浓缩作用过渡。(2) 地下水水化学组分主要受溶滤、离子交换、脱硫酸以及人为作用控制,其中碳酸盐矿物、硅酸盐矿物、石膏和岩盐的溶解沉淀对地下水化学组分有重要影响。(3)NO3--N含量受氮肥、人畜粪便排放等人为作用影响;地下水赋存特征对NO3--N浓度垂直分布存在明显影响。
张文琦,董少刚,马铭言,赵镇,陈悦. 岱海盆地地下水化学特征及成因[J]. 干旱区研究, 2021, 38(6): 1546-1555.
ZHANG Wenqi,DONG Shaogang,MA Mingyan,ZHAO Zhen,CHEN Yue. Chemical characteristics and origin of groundwater in the Daihai basin[J]. Arid Zone Research, 2021, 38(6): 1546-1555.
表1
研究区潜水和承压水监测指标的统计分析结果"
指标 | K+ | Na+ | Ca2+ | Mg2+ | Cl- | SO42- | HCO3- | NO3--N | TDS | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|
岱海湖水 | 平均值 | 6.6 | 4060.0 | 24.0 | 265.2 | 6541.1 | 144.0 | 1281.2 | - | 11683.1 | 9.1 |
最大值 | 6.7 | 4086.0 | 24.6 | 269.1 | 6578.0 | 148.0 | 1284.2 | - | 11744.4 | 9.2 | |
最小值 | 6.5 | 4032.0 | 23.2 | 259.1 | 6501.4 | 139.0 | 1275.5 | - | 11603.0 | 9.0 | |
标准差 | 0.1 | 27.1 | 0.7 | 5.4 | 38.4 | 4.6 | 5.0 | - | 72.6 | 0.1 | |
潜水 | 平均值 | 1.0 | 32.9 | 66.2 | 24.5 | 39.6 | 38.7 | 265.5 | 32.3 | 386.0 | 7.8 |
最大值 | 2.0 | 117.9 | 140.3 | 63.2 | 159.5 | 144.0 | 347.7 | 157.5 | 779.5 | 8.1 | |
最小值 | 0.4 | 12.4 | 40.1 | 7.3 | 10.6 | - | 183.0 | 7.01 | 215.7 | 7.6 | |
标准差 | 0.5 | 29.2 | 24.3 | 14.0 | 46.6 | 35.9 | 41.0 | 40.8 | 158.2 | 0.1 | |
变异系数 | 0.5 | 0.9 | 0.4 | 0.6 | 1.2 | 0.9 | 0.2 | 1.3 | 0.4 | 0.0 | |
承压水 | 平均值 | 1.1 | 51.5 | 54.8 | 20.5 | 42.4 | 40.1 | 277.0 | 16.1 | 383.7 | 8.0 |
最大值 | 3.5 | 290.0 | 70.1 | 40.1 | 241.1 | 153.6 | 488.1 | 52.1 | 935.8 | 8.2 | |
最小值 | 0.4 | 12.9 | 14.0 | 9.7 | 14.2 | - | 213.5 | - | 243.8 | 7.6 | |
标准差 | 0.7 | 78.4 | 12.9 | 8.2 | 57.5 | 38.3 | 75.8 | 13.1 | 198.8 | 0.2 | |
变异系数 | 0.6 | 1.5 | 0.2 | 0.4 | 1.4 | 1.0 | 0.3 | 0.8 | 0.5 | 0.0 |
表2
研究区地下水化学类型分类表"
类型 | 个数 | 采样点 | |
---|---|---|---|
潜水 | HCO3-Ca·Mg | 9 | DQ-02、DQ-04、DQ-05、DQ-06、DQ-08、DQ-11、DQ-12、DQ-13、DQ-14 |
HCO3-Ca | 4 | DQ-01、DQ-03、DQ-16、DQ-17 | |
HCO3·Cl-Ca·Na | 1 | DQ-07 | |
HCO3·Cl-Ca·Mg | 1 | DQ-09 | |
HCO3·SO4-Mg·Ca | 1 | DQ-10 | |
HCO3-Na·Ca | 1 | DQ-15 | |
承压水 | HCO3-Ca·Mg | 10 | DS-01、DS-02、DS-03、DS-04、DS-09、DS-12、DS-13、DS-14、DS-15、DS-17 |
HCO3-Ca·Na | 3 | DS-07、DS-10、DS-11 | |
HCO3-Ca | 2 | DS-05、DS-06 | |
HCO3·Cl-Na | 2 | DS-08、DS-16 |
表3
矿物饱和指数范围及沉淀溶解方程"
矿物 | 饱和指数范围 | 溶解沉淀方程 |
---|---|---|
生石膏 | -3.24~-1.86 | CaSO4=Ca2++SO42- |
霰石 | 0.11~0.83 | CaCO3=Ca2++CO32- |
方解石 | 0.26~0.97 | CaCO3=Ca2++CO32- |
白云石 | 0.24~2.10 | CaMg(CO3)2=Ca2++Mg2++2CO32- |
石膏 | -3.02~-1.64 | CaSO4·2H2O=Ca2++SO42-+2H2O |
温石棉 | -4.24~-0.16 | Mg3Si2O5(OH)4+6H+=H2O+2H4SiO4+3Mg2+ |
海泡石 | -3.02~0.20 | Mg2Si3O7.5OH·3H2O+4H++0.5H2O=2Mg2++3H4SiO4 |
滑石 | -0.51~4.14 | Mg3Si4O10(OH)2+4H2O+6H+=3Mg2++4H4SiO4 |
岩盐 | -8.45~-5.89 | NaCl=Na++Cl- |
表4
地下水中各离子相关性分析"
K+ | Na+ | Ca2+ | Mg2+ | Cl- | SO42- | HCO3- | NO3- | SiO2 | TDS | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|
K+ | 1 | ||||||||||
Na+ | 0.783** | 1 | |||||||||
Ca2+ | -0.174 | -0.174 | 1 | ||||||||
Mg2+ | 0.206 | 0.051 | 0.409* | 1 | |||||||
Cl- | 0.595** | 0.764** | 0.380* | 0.470** | 1 | ||||||
SO42- | 0.734** | 0.706** | -0.146 | 0.292 | 0.483** | 1 | |||||
HCO3- | 0.586** | 0.871** | -0.050 | 0.285 | 0.765** | 0.612** | 1 | ||||
NO3- | 0.063 | -0.056 | 0.819** | 0.616** | 0.445** | -0.094 | 0.044 | 1 | |||
SiO2 | 0.794** | 0.744** | -0.314 | -0.079 | 0.399* | 0.669** | 0.495** | -0.118 | 1 | ||
TDS | 0.716** | 0.846** | 0.299 | 0.482** | 0.942** | 0.696** | 0.850** | 0.405* | 0.554** | 1 | |
pH | 0.533** | 0.503** | -0.389* | 0.138 | 0.213 | 0.555* | 0.478** | -0.205 | 0.466** | 0.369* | 1 |
[1] | 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 北京: 地质出版社. 2018. |
[ Zhang Renquan, Liang Xing, Jin Menggui, et al. Foundation of Hydrogeology[M]. Beijing: Geology Press, 2018. ] | |
[2] | 刘白薇, 董少刚, 唐仲华, 等. 内蒙古土默川平原地下水化学季节性变化特征[J]. 工程勘察, 2020, 48(5):34-40. |
[ Liu Baiwei, Dong Shaogang, Tang Zhonghua, et al. Seasonal changes of groundwater chemistry in Tumochuan Plain of Inner Mongolia[J]. Geotechnical Investigation and Surveying, 2020, 48(5):34-40. ] | |
[3] | 王磊, 董少刚, 王雪欣, 等. 内蒙古托克托县“神泉”水文地球化学特征及成因研究[J]. 干旱区研究, 2020, 37(5):1140-1147. |
[ Wang Lei, Dong Shaogang, Wang Xuexin, et al. Hydrogeochemical characteristics and origin of“Shenquan”in Tuoketuo County, Inner Mongolia[J]. Arid Zone Research, 2020, 37(5):1140-1147. ] | |
[4] | 侯庆秋, 董少刚, 张旻玮. 内蒙古四子王旗浅层地下水水化学特征及其成因[J]. 干旱区资源与环境, 2020, 34(4):116-121. |
[ Hou Qingqiu, Dong Shaogang, Zhang Minwei. Chemical characteristics and genesis of shallow groundwater in Siziwang Banner, Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2020, 34(4):116-121. ] | |
[5] | 任晓辉, 吴玺, 高宗军, 等. 酒泉东盆地地下水化学特征及成因分析[J]. 干旱区资源与环境, 2019, 33(10):109-116. |
[ Ren Xiaohui, Wu Xi, Gao Zongjun, et al. Hydrochemical characteristics and formation mechanisms of groundwater in Jiuquan east basin[J]. Journal of Arid Land Resources and Environment, 2019, 33(10):109-116. ] | |
[6] | 吕晓立, 刘景涛, 朱亮, 等. 甘肃省榆中盆地地下水化学演化特征及控制因素[J]. 干旱区资源与环境, 2020, 34(2):194-201. |
[ Lyu Xiaoli, Liu Jingtao, Zhu Liang, et al. Characteristics and controlling factors of chemical evolution of groundwater in Yuzhong basin[J]. Journal of Arid Land Resources and Environment, 2020, 34(2):194-201. ] | |
[7] | 郝艳茹, 王鹏, 张明珠, 等. 广花盆地地下水化学特征及其演化分析[J]. 生态环境学报, 2020, 29(2):337-344. |
[ Hao Yanru, Wang Peng, Zhang Mingzhu, et al. Hydrochemical characteristic and its driving force of groundwater in the covered karst in Pearl River Basin[J]. Ecology and Environmental Sciences, 2020, 29(2):337-344. ] | |
[8] | 李政葵, 夏蔓宏, 董少刚, 等. 洛阳盆地浅层地下水化学特征及其演化特征分析[J]. 地球与环境, 2019, 47(1):57-63. |
[ Li Zhengkui, Xia Manhong, Dong Shaogang, et al. Hydrochemical characteristics and evolution characteristics of shallow groundwater in the Luoyang Basin[J]. Earth and Environment, 2019, 47(1):57-63. ] | |
[9] | 吕晓立, 刘景涛, 韩占涛, 等. 城镇化进程中新疆塔城盆地浅层地下水化学演变特征及成因[J]. 环境科学, 2020, 41(3):1197-1206. |
[ Lyu Xiaoli, Liu Jingtao, Han Zhantao, et al. Chemical evolution of groundwater in the Tacheng Basin of Xinjiang in the process of urbanization[J]. Environmental Science, 2020, 41(3):1197-1206. ] | |
[10] | 李政红, 张翼龙, 胡波, 等. 人类活动对内蒙古托克托县浅层地下水NO3--N污染的驱动作用[J]. 地球学报, 2018, 39(3):358-364. |
[ Li Zhenghong, Zhang Yilong, Hu Bo, et al. Driving action of human activities on NO3--N pollution in confined groundwater of Togtoh County, Inner Mongolia[J]. Acta Geoscientica Sinica, 2018, 39(3):358-364. ] | |
[11] | 冯海波, 董少刚, 王立新, 等. 潜水与承压水“三氮”污染空间分布及成因分析——以内蒙古托克托地区为例[J]. 中国农村水利水电, 2017, 57(4):91-96. |
[ Feng Haibo, Dong Shaogang, Wang Lixin, et al. Spatial distribution and origin of “Three-nitrogen compounds” in confined and unconfined water of Toketuo County, Inner Mongolia[J]. China Rural Water and Hydropower, 2017, 57(4):91-96. ] | |
[12] | 庞园, 李志威, 张明珠. 广花盆地地下水三氮时空分布特征及影响因素分析[J]. 生态环境学报, 2018, 27(5):916-925. |
[ Pang Yuan, Li Zhiwei, Zhang Mingzhu. Analysis of spatial-temporal distribution and influencing factors of Three-nitrogen in groundwater Guanghua Basin[J]. Ecology and Environmental Sciences, 2018, 27(5):916-925. ] | |
[13] | 周文武, 陈冠益, 穷达卓玛, 等. 拉萨垃圾填埋场地下水环境质量影响分析研究[J]. 环境监测管理与技术, 2020, 32(4):20-23, 51. |
[ Zhou Wenwu, Chen Guanyi, Qiongdazhuoma, Impact study of landfill on groundwater environmental quality in Lhasa[J]. The Administration and Technique of Environmental Monitoring, 2020, 32(4):20-23, 51. ] | |
[14] | 赵景峰, 秦大河, 长岛秀树, 等. 博斯腾湖的咸化机理及湖水矿化度稳定性分析[J]. 水科学进展, 2007, 18(4):475-482. |
[ Zhao Jingfeng, Qin Dahe, Nagashima Hideki, et al. Analysis of mechanism of the salinization process and the salinity variation in Bosten lake[J]. Advances in Water Science, 2007, 18(4):475-482. ] | |
[15] | 盛东, 李俊峰, 孙飞飞, 等. 干旱区内陆湖泊水盐变化及调控机理[J]. 干旱区研究, 2010, 27(4):529-535. |
[ Sheng Dong, Li Junfeng, Sun Feifei, et al. Study on water-salt change of some inland lakes in arid areas and the control mechanism[J]. Arid Zone Research, 2010, 27(4):529-535. ] | |
[16] | 杨立彬, 黄强, 武见, 等. 红碱淖湖泊面积变化影响因素及预测分析[J]. 干旱区资源与环境, 2014, 28(3):74-78. |
[ Yang Libin, Huang Qiang, Wu Jian, et al. Influence factors and prediction on area change of lake Hongjiannao[J]. Journal of Arid Land Resources and Environment, 2014, 28(3):74-78. ] | |
[17] |
Jarsjö J, Destouni G. Groundwater discharge into the Aral Sea after 1960[J]. Journal of Marine Systems, 2004, 47(1):109-120.
doi: 10.1016/j.jmarsys.2003.12.013 |
[18] |
Schettler G, Oberhänsli H, Stulina G, et al. Hydrochemical water evolution in the Aral Sea Basin. Part I: Unconfined groundwater of the Amu Darya Delta-Interactions with surface waters[J]. Journal of Hydrology, 2013, 495:267-284.
doi: 10.1016/j.jhydrol.2013.03.044 |
[19] | 巩艳萍. 巴丹吉林沙漠地下水对湖泊水均衡及其盐分变化的影响[D]. 北京: 中国地质大学, 2017. |
[ Gong Yanping. The Impacts of Groundwater on Lakes in the Badain Jaran Desert Relevant to Water Balance and Salts Variation[D]. Beijing: China University of Geosciences, 2017. ] | |
[20] | 王旭升, 胡晓农, 金晓媚, 等. 巴丹吉林沙漠地下水与湖泊的相互作用[J]. 地学前缘, 2014, 21(4):91-99. |
[ Wang Xusheng, Hu Xiaonong, Jin Xiaomei, et al. Interactions between groundwater and lakes in Badain Jaran Desert[J]. Earth Science Frontiers, 2014, 21(4):91-99. ] | |
[21] | 沙占江, 拉本, 孔凡翠, 等. 青海湖尕海地下水输入及其物质通量[J]. 地质学报, 2015, 89(增刊):282-285. |
[ Sha Zhanjiang, La Ben, Kong Fancui, et al. Groundwater input and material flux in Gahai Lake, Qinghai[J]. Acta Geologica Sinica, 2015, 89(Suppl.):282-285. ] | |
[22] | 韩积斌, 许建新, 徐凯, 等. 柴达木盆地尕斯库勒盐湖地表水-地下水的转化与铀的补给通量[J]. 湖泊科学, 2019, 31(6):1738-1748. |
[ Han Jibin, Xu Jianxin, Xu Kai, et al. The exchange relationship of surface water-groundwater and uranium flux in the Gas Hure Salt Lake of northwest Qaidam Basin, China[J]. Journal of Lake Sciences, 2019, 31(6):1738-1748. ] | |
[23] | 刘旭隆. 岱海湖泊面积与水位动态变化及其驱动力分析[D]. 呼和浩特: 内蒙古大学, 2019. |
[ Liu Xulong. Analysis on Dynamic Changes of Lake Area and Water Level and Driving Force in Daihai Lake[D]. Hohhot: Inner Mongolia University, 2019. ] | |
[24] | 孙占东, 姜加虎, 王润. 岱海水盐变化原因及影响研究[J]. 干旱区研究, 2006, 23(2):264-268. |
[ Sun Zhandong, Jiang Jiahu, Wang Run. Study on the causes and impacts of water-salt change of the Daihai Lake[J]. Arid Zone Research, 2006, 23(2):264-268. ] | |
[25] | 周云凯, 姜加虎. 近50年岱海生态与环境变化分析[J]. 干旱区研究, 2009, 26(2):162-168. |
[ Zhou Yunkai, Jiang Jiahu. Changes in the ecological environment in the Daihai Lake Basin over the last 50 Years[J]. Arid Zone Research, 2009, 26(2):162-168. ] | |
[26] | 陈建生, 季弼宸, 刘震, 等. 内蒙古高原岱海接受远程深循环地下水补给的环境同位素及水化学证据[J]. 湖泊科学, 2013, 25(4):521-530. |
[ Chen Jiansheng, Ji Bichen, Liu Zhen, et al. Isotopic and hydro-chemical evidence on the origin of groundwater through deep-circulation ways in Lake Daihai region, Inner Mongolia plateau[J]. Journal of Lake Sciences, 2013, 25(4):521-530. ] | |
[27] | 王书航, 白妙馨, 陈俊伊, 等. 典型农牧交错带山水林田湖草生态保护修复——以内蒙古岱海流域为例[J]. 环境工程技术学报, 2019, 9(5):515-519. |
[ Wang Shuhang, Bai Miaoxin, Chen Junyi, et al. Research on the ecological protection and restoration of mountain-river-forest-farmland-lake-grassland system in typical farming-pastoral ecotone: Taking Daihai Lake Basin in Inner Mongolia as an example[J]. Journal of Environmental Engineering Technology, 2019, 9(5):515-519. ] | |
[28] | 许清海, 肖举乐, 中村俊夫, 等. 全新世以来岱海盆地植被演替和气候变化的孢粉学证据[J]. 冰川冻土, 2004, 26(1):73-80. |
[ Xu Qinghai, Xiao Jule, Toshio Nakamura, et al. Pollen evidence of vegetation and climate changes in Daihai Lake area during the Holocene[J]. Journal of Glaciology and Geocryology, 2004, 26(1):73-80. ] | |
[29] | 许清海, 肖举乐, 中村俊夫, 等. 孢粉记录的岱海盆地1500年以来气候变化[J]. 第四纪研究, 2004, 87(3):341-347. |
[ Xu Qinghai, Xiao Jule, Toshio Nakamura, et al. Climate changes of Daihai Basin during the past 1500 from a pollen record[J]. Quaternary Sciences, 2004, 87(3):341-347. ] | |
[30] | 张飞. 青海湖和岱海流域水化学特征及现代化学风化作用[D]. 南京: 南京农业大学, 2009. |
[ Zhang Fei. Water Chemistry and Chemical Weathering at Lake Qinghai and Lake Daihai Catchments[D]. Nanjing: Nanjing Agricultural University, 2009. ] | |
[31] | 刘培桐, 王华东, 潘宝林, 等. 岱海盆地的水文化学地理特征及其在农业生产中的意义[J]. 北京师范大学学报(自然科学版), 1964, 9(1):83-101. |
[ Liu Peitong, Wang Huadong, Pan Baolin, et al. Hydrochemical and geographical characteristics of the Daihai Basin and its significance in agricultural production[J]. Journal of Beijing Normal University (Natural Science), 1964, 9(1):83-101. ] | |
[32] | 中国地质调查局. 地下水质量标准(GB/T 14848-2017)[S]. 北京: 中国标准出版社, 2017. |
[China Geological Survey. Standard for Groundwater Quality (GB/T 14848-2017)[S]. Beijiang: China Standards Press, 2017. ] | |
[33] | 卞跃跃, 赵丹, 韩永, 等. 兖州煤田奥陶系灰岩地下水水化学特征及其形成机理[J]. 地球学报, 2017, 38(2):236-242. |
[ Bian Yueyue, Zhao Dan, Han Yong, et al. Hydrochemical characteristics and formation mechanism of ordovician limestone groundwater in the Yanzhou coalfield[J]. Acta Geoscientica Sinica, 2017, 38(2):236-242. ] | |
[34] | 梁旭, 刘华民, 纪美辰, 等. 北方半干旱区土地利用/覆被变化对湖泊水质的影响: 以岱海流域为例(2000—2018年)[J]. 湖泊科学, 2021, 33(3):727-738. |
[ Liang Xu, Liu Huamin, Ji Meichen, et al. Effects of land use/ cover change on lake water quality in the semi-arid region of northern China: A case study in Lake Daihai Basin (2000-2018)[J]. Journal of Lake Sciences, 2021, 33(3):727-738. ] | |
[35] | 寇馨月, 丁军军, 李玉中, 等. 青岛市农区地下水硝态氮污染来源解析[J]. 环境科学, 2021, 42(7):3232-3241. |
[ Kou Xinyue, Ding Junjun, Li Yuzhong, et al. Identifying the sources of groudwater NO3--N in agricultural region of Qingdao[J]. Environmental Science, 2021, 42(7):3232-3241. ] | |
[36] | 吴海燕, 傅世锋, 蔡晓琼, 等. 东山岛地下水“三氮”空间分布特征[J]. 环境科学, 2015, 36(9):3203-3211. |
[ Wu Haiyan, Fu Shifeng, Cai Xiaoqiong, et al. Spatial variation of Ammonia-N, Nitrate-N and Nitrite-N in groundwater of Dongshan Island[J]. Environmental Science, 2015, 36(9):3203-3211. ] |
[1] | 薛栋元, 胡海珠, 张锦宁, 任嘉伟. 牧区河岸潜流带硝酸盐氮和氨氮浓度对水文过程的响应机制[J]. 干旱区研究, 2023, 40(6): 937-948. |
[2] | 高福翔, 徐东升, 周金龙, 周龙. 新疆博尔塔拉河中游地表水与地下水转化关系及原因[J]. 干旱区研究, 2023, 40(11): 1754-1764. |
[3] | 杨海娇,魏加华,任倩慧. 柴达木盆地典型流域地表水-地下水转化关系及水化学特征[J]. 干旱区研究, 2022, 39(5): 1543-1554. |
[4] | 阮永健,吴秀芹. 基于GRACE和GLDAS的西北干旱区地下水资源量可持续性评价[J]. 干旱区研究, 2022, 39(3): 787-800. |
[5] | 崔佳琪,李仙岳,史海滨,孙亚楠,马红雨,菅文浩. 节水改造前后永济灌域地下水环境时空变化特征[J]. 干旱区研究, 2022, 39(3): 841-852. |
[6] | 苏春利,纪倩楠,陶彦臻,谢先军,潘洪捷. 河套灌区西部土壤盐渍化分异特征及其主控因素[J]. 干旱区研究, 2022, 39(3): 916-923. |
[7] | 丁启振,雷米,周金龙,张杰,徐东升. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840. |
[8] | 白凡,周金龙,曾妍妍. 吐鲁番盆地平原区地下水水化学特征及水质评价[J]. 干旱区研究, 2022, 39(2): 419-428. |
[9] | 李平平,王晓丹,陈海龙. 苏干湖湿地与奎屯诺尔湿地之间水力联系研究[J]. 干旱区研究, 2022, 39(2): 429-435. |
[10] | 刘磊,陈军锋,吕棚棚,赵德星,杜琦. 冻融作用下地下水浅埋区土壤盐分及离子变化特征[J]. 干旱区研究, 2022, 39(2): 448-455. |
[11] | 时雯雯,周金龙,曾妍妍,孙英. 和田地区地下水中氟的分布特征及形成过程[J]. 干旱区研究, 2022, 39(1): 155-164. |
[12] | 刘璐,陈亚鹏,李肖杨. 生态输水对孔雀河地下水埋深及植被的影响[J]. 干旱区研究, 2021, 38(4): 901-909. |
[13] | 玛尔胡拜·牙生,马龙,吉力力·阿不都外力,张伟燕. 新疆天山西段夏季河流水化学特征及其影响因素研究[J]. 干旱区研究, 2021, 38(3): 600-609. |
[14] | 艾力哈木·艾克拉木,周金龙,张杰,魏兴,余东,陈劲松. 伊犁河谷西北部地下水化学特征及成因分析[J]. 干旱区研究, 2021, 38(2): 504-512. |
[15] | 王京晶,刘鹄,徐宗学,王思佳. 基于昼夜水位波动法估算地下水蒸散发量的研究——以河西走廊典型绿洲为例[J]. 干旱区研究, 2021, 38(1): 59-67. |
|