干旱区研究 ›› 2021, Vol. 38 ›› Issue (3): 867-874.doi: 10.13866/j.azr.2021.03.28
收稿日期:
2020-09-01
修回日期:
2020-11-16
出版日期:
2021-05-15
发布日期:
2021-06-17
通讯作者:
刘任涛
作者简介:
张安宁(1996-),硕士研究生,主要从事荒漠生态学研究. E-mail: 基金资助:
ZHANG Anning(),LIU Rentao(),CHEN Wei,CHANG Haitao,JI Xueru
Received:
2020-09-01
Revised:
2020-11-16
Online:
2021-05-15
Published:
2021-06-17
Contact:
Rentao LIU
摘要:
以土壤动物为主的碎屑食物网是枯落物分解及养分释放的重要途径,也是维持干旱-半干旱区脆弱生态系统生物地球化学循环和稳定性的关键环节。目前,土壤动物对枯落物分解的影响机制研究已成为当前研究的热点,但土壤动物与枯落物分解如何响应气候变化缺乏系统总结。从气候变化对枯落物分解的影响、气候变化对土壤动物营养结构的影响和气候变化对枯落物分解和土壤动物关系的影响3个方面,阐明气候变化通过改变水热因子和枯落物质量来影响枯落物分解功能和土壤动物的影响规律。现阶段对枯落物中土壤动物的研究仍停留在群落水平,而关于枯落物中土壤动物的营养结构和功能性状分布特征,尚未可知。因此,未来研究中,应注重大尺度、长时间的野外观测与控制试验相结合的方法,而且在机理方面需注重土壤动物功能性状对枯落物分解作用的研究。
张安宁,刘任涛,陈蔚,常海涛,吉雪茹. 干旱区气候因子对枯落物分解和土壤动物的影响[J]. 干旱区研究, 2021, 38(3): 867-874.
ZHANG Anning,LIU Rentao,CHEN Wei,CHANG Haitao,JI Xueru. Effects of climatic factors on litter decomposition and soil fauna in arid regions[J]. Arid Zone Research, 2021, 38(3): 867-874.
表1
气候变化对干旱-半干旱区枯落物分解的影响"
研究样地 | 年均温/℃ | 年降雨量/mm | 气候带 | 研究方法 | 研究结果 |
---|---|---|---|---|---|
科尔沁沙地 | 6.0 | 343 | 半干旱区 | 增温:灯光加热 | 枯落物CO2释放速率与温度呈显著正相关且在40 ℃时,枯落物CO2释放速率达到最高[ |
毛乌素沙地 | 8.3 | 292 | 半干旱区 | 增温:开顶箱模拟增温 | 增温可能缓解干旱-半干旱区植物枯落物分解,并且温度对枯落物分解的抑制作用与分解时间和枯落物类型有关[ |
锡林郭勒草原 | 4.0 | 295 | 半干旱区 | 增温:海拔梯度代替气候变化 | 温度升高2.7 ℃,羊草和大针茅枯落物分解率提高35.83%和6.68%[ |
科罗拉多高原 | 14.4 | 241 | 半干旱区 | 增温:红外线灯光加热 | 温度升高2 ℃没有显著改变凋落物质量损失率,但环境变化影响了枯落物分解过程[ |
科尔沁沙地 | 6.0 | 343 | 半干旱区 | 降雨:自然降雨,减雨30%,减雨50% | 降雨减少枯落物分解率和氮磷的归还[ |
古尔班通古特 沙漠 | 4.0 | 150 | 干旱区 | 降雨:自然降雨,冬春增雪,夏季增雨 | 季节性短暂降雨增加对荒漠区枯落物分解无显著影响[ |
纳米布沙漠 | 10.0 | 75 | 干旱区 | 降雨:降雨季节变化 | 在干旱期,枯落物质量损失率为0%~16.7%;在湿润期,枯落物质量损失率为64.7%~97.2%。降雨是纳米布沙漠枯落物分解的最主要因素[ |
内蒙古荒漠草原 | 3.4 | 280 | 半干旱区 | 降雨:自然降雨,减雨30%,增雨30% | 增减雨将显著改变植被根系的分解速率,首先影响根系的基质质量,进而影响根系质量残留率[ |
[1] | Fu S, Zou X, Coleman D. Highlights and perspectives of soil biology and ecology research in China[J]. Soil Biology and Biochemistry, 2009,42:868-876. |
[2] | 张丹桔, 张健, 杨万勤, 等. 一个年龄序列巨桉人工林植物和土壤生物多样性[J]. 生态学报, 2013,33(13):3947-3962. |
[ Zhang Danji, Zhang Jian, Yang Wanqin, et al. Plant’s and soil organism’s diversity across a range of Eucalyptus grandis plantation ages[J]. Acta Ecologica Sinica, 2013,33(13):3947-3962. ] | |
[3] |
Atkinson R B, Cairns J. Plant decomposition and litter accumulation in depressional wetlands, functional performance of two wetland age classes that were created via excavation[J]. Wetlands, 2001,21:354-362.
doi: 10.1672/0277-5212(2001)021[0354:PDALAI]2.0.CO;2 |
[4] | 张安宁, 刘任涛, 刘佳楠, 等. 干旱风沙区柠条枯落物对土壤节肢动物群落的影响[J]. 生态学杂志, 2020,39(7):2383-2391. |
[ Zhang Anning, Liu Rentao, Liu Jianan, et al. Effects of Caragana korshinskii litter on soil arthropod community in desertified region[J]. Chinese Journal of Ecology, 2020,39(7):2383-2391. ] | |
[5] |
Cameron W, Franz B S, Franco W, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(14):5266-5270.
doi: 10.1073/pnas.1320054111 pmid: 24639507 |
[6] |
Jan Frouz. Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization[J]. Geoderma, 2017,332(15):161-172.
doi: 10.1016/j.geoderma.2017.08.039 |
[7] |
Plaza C, Zaccone C, Sawicka K, et al. Soil resources and element stocks in drylands to face global issues[J]. Scientific Reports, 2018,8(1):13788.
doi: 10.1038/s41598-018-32229-0 |
[8] |
Van den Hoogen J, Geisen S, Routh D, et al. Soil nematode abundance and functional group composition at a global scale[J]. Nature, 2019,572(7768):194-198.
doi: 10.1038/s41586-019-1418-6 pmid: 31341281 |
[9] |
Slade E M, Riutta T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments[J]. Basic and Applied Ecology, 2012,13:423-431.
doi: 10.1016/j.baae.2012.06.008 |
[10] |
Mathieu S, Adriane A, Estelle F, et al. Increasing temperature and decreasing specific leaf area amplify centipede predation impact on Collembola[J]. European Journal of Soil Biology, 2018,89:9-13.
doi: 10.1016/j.ejsobi.2018.08.002 |
[11] | 张慧, 武海涛. 气候变暖对土壤动物群落结构的影响机制[J]. 生态学杂志, 2020,39(2):655-664. |
[ Zhang Hui, Wu Haitao. Research progresses in effects of climate warming on soil fauna community structure[J]. Chinese Journal of Ecology, 2020,39(2):655-664. ] | |
[12] |
Berdugo M, Delgado-Baquerizo M, Soliveres S, et al. Global ecosystem thresholds driven by aridity[J]. Science, 2020,367(6479):787-790.
doi: 10.1126/science.aay5958 |
[13] |
Veldhuis M P, Laso F J, Han O, et al. Termites promote resistance of decomposition to spatiotemporal variability in rainfall[J]. Ecology, 2017,98(2):467-477.
doi: 10.1002/ecy.1658 pmid: 27861770 |
[14] | 刘佳楠, 刘任涛, 赵娟, 等. 沙地柠条锦鸡儿灌丛枯落叶输入特征及对土壤理化性质的影响[J]. 干旱区资源与环境, 2018,32(11):169-175. |
[ Liu Jianan, Liu Rentao, Zhao Juan, et al. Leaflitter input of Caragana kornshinskii and its effect on soil properties in desertified grassland[J]. Journal of Arid Land Resources and Environment, 2018,32(11):169-175. ] | |
[15] |
Eisenhauer N, Herrmann S, Hines J, et al. The dark side of animal phenology[J]. Trends in Ecology & Evolution, 2018,33(12):898-901.
doi: 10.1016/j.tree.2018.09.010 |
[16] | 孟庆涛, 李玉霖, 赵学勇, 等. 科尔沁沙地不同环境条件下植物叶凋落物CO2释放研究[J]. 干旱区研究, 2008,25(4):519-524. |
[ Meng Qingtao, Li Yulin, Zhao Xueyong, et al. Study on CO2 release of leaf litters in different environment conditions in the Horqin Sandy land[J]. Arid Zone Research, 2008,25(4):519-524. ] | |
[17] |
Chuckran P F, Reibold R, Throop H L, et al. Multiple mechanisms determine the effect of warming on plant litter decomposition in a dryland[J]. Soil Biology and Biochemistry, 2020,145(1):107799.
doi: 10.1016/j.soilbio.2020.107799 |
[18] | 牟钰, 贾昕, 郑甲佳, 等. 毛乌素沙地油蒿枯落物分解对增温的响应[J]. 北京林业大学学报, 2020,42(6):134-141. |
[ Mu Yu, Jia Xin, Zheng Jiajia, et al. Response of litter decomposition to warming of Artemisia ordosica in Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2020,42(6):134-141. ] | |
[19] | 王其兵, 李凌浩, 白永飞, 等. 模拟气候变化对3种草原植物群落混合凋落物分解的影响[J]. 植物生态学报, 2000,24(6):674-679. |
[ Wang Qibing, Li Linghao, Bai Yongfei, et al. Effects of simulated climate change on the decomposition of mixed litter in three steppe communities[J]. Chinese Journal of Plant Ecology, 2000,24(6):519-524. ] | |
[20] |
Becker J N, Kuzyakov Y. Teatime on Mount Kilimanjaro: Assessing climate and land-use effects on litter decomposition and stabilization using the Tea Bag Index[J]. Land Degradation & Development, 2018,29(8):2321-2329.
doi: 10.1002/ldr.v29.8 |
[21] | Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111:5266-5270. |
[22] | 霍利霞, 红梅, 赵巴音那木拉, 等. 氮沉降和降雨变化对荒漠草原凋落物分解的影响[J]. 生态学报, 2019,39(6):2139-2146. |
[ Huo Lixia, Hong Mei, Zhao Bayinnamula, et al. Effects of increased nitrogen deposition and changing rainfall patterns on litter decomposition in a desert grassland[J]. Acta Ecologica Sinica, 2019,39(6):2139-2146. ] | |
[23] | 陈婷, 郗敏, 孔范龙, 等. 枯落物分解及其影响因素[J]. 生态学杂志, 2016,35(7):1927-1935. |
[ Chen Ting, Xi Min, Kong Fanlong, et al. A review on litter decomposition and influence factors[J]. Chinese Journal of Ecology, 2016,35(7):1927-1935. ] | |
[24] | 叶贺, 红梅 赵巴音那木拉, 等. 水氮控制对短花针茅荒漠草原根系分解的影响[J]. 应用与环境生物学报, 2020,26(5):1169-1175. |
[ Ye He, Hong Mei, Zhao Bayinnamula, et al. Effects of water and nitrogen treatments on root decomposition of Stipa breviflora desert steppe[J]. Chinese Journal of Applied and Environmental Biology, 2020,26(5):1169-1175. ] | |
[25] | 侯玲玲, 孙涛, 毛子军, 等. 小兴安岭不同林龄天然次生白桦林凋落物分解及养分变化[J]. 植物研究, 2012,32(4):492-496. |
[ Hou Lingling, Sun Tao, Mao Zijun, et al. Litter decomposition and nutrient dynamic of Betula platyphylla secondary forest with different stand ages in Xiaoxing’an Mountains[J]. Bulletin of Botanical Research, 2012,32(4):492-496. ] | |
[26] | 和润莲, 陈亚梅, 邓长春, 等. 雪被期川西高山林线交错带两种地被物凋落物分解与土壤动物多样性[J]. 应用生态学报, 2015,26(3):723-731. |
[ He Runlian, Chen Yamei, Deng Changchun, et al. Litter decomposition and soil faunal diversity of two understory plant debris in the alpine timberline ecotone of western Sichuan in a snow cover season[J]. Chinese Journal of Applied Ecology, 2015,26(3):723-731. ] | |
[27] |
Jiang Y F, Yin X Q, Wang F B. The influence of litter mixing on decomposition and soil fauna assemblages in a Pinus koraiensis mixed broad-leaved forest of the Changbai Mountains, China[J]. European Journal of Soil Biology, 2013,55:28-39.
doi: 10.1016/j.ejsobi.2012.11.004 |
[28] | 谢尧, 赵琼, 李炎真, 等. 干旱化对樟子松固沙林氮磷循环的影响[J]. 生态学杂志, 2019,38(12):3593-3600. |
[ Xie Yao, Zhao Qiong, Li Yanzhen, et al. Effects of aridification on nitrogen and phosphorus cycles in a Pinus sylvestis var. mongolica sand-fixation plantation[J]. Chinese Journal of Ecology, 2019,38(12):3593-3600. ] | |
[29] |
Robinson C H, Wookey P A, Parsons A N, et al. Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath[J]. Oikos, 1995,74(3):503-512.
doi: 10.2307/3545996 |
[30] |
Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship[J]. Oikos, 1997,79(3):439-449.
doi: 10.2307/3546886 |
[31] | 赵庆云, 张武, 王式功, 等. 西北地区东部干旱-半干旱区极端降水事件的变化[J]. 中国沙漠, 2005,25(6):112-117. |
[ Zhao Qingyun, Zhang Wu, Wang Shigong, et al. Change of extreme precipitation events in arid and semi-arid regions in the east of Northwest China[J]. Journal of Desert Research, 2005,25(6):112-117. ] | |
[32] |
Schwinning S, Sala O E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems[J]. Oecologia, 2004,141(2):211-220.
pmid: 15034778 |
[33] |
Pucheta E, Llanos M, Meglioli C, et al. Litter decomposition in a sandy Monte desert of western Argentina: Influences of vegetation patches and summer rainfall[J]. Austral Ecology, 2006,31(7):808-816.
doi: 10.1111/aec.2006.31.issue-7 |
[34] |
Jacobson K M, Jacobson P J. Rainfall regulates decomposition of buried cellulose in the Namib Desert[J]. Journal of Arid Environments, 1998,38(4):571-583.
doi: 10.1006/jare.1997.0358 |
[35] |
Moorhead D L, Callaghan T. Effects of increasing ultraviolet B radiation on decomposition and soil organic matter dynamics: A synjournal and modelling study[J]. Biology and Fertility of Soils, 1994,18(1):19-26.
doi: 10.1007/BF00336439 |
[36] | 周丽, 李彦, 唐立松, 等. 光降解在凋落物分解中的作用[J]. 生态学杂志, 2011,30(9):2045-2052. |
[ Zhou Li, Li Yan, Tang Lisong, et al. Roles of photodegradation in litter decomposition[J]. Chinese Journal of Ecology, 2011,30(9):2045-2052. ] | |
[37] | 黄刚, 周丽, 唐立松, 等. 荒漠植物凋落物光降解特征随降水梯度的变化[J]. 生态学杂志, 2013,32(10):2574-2582. |
[ Huang Gang, Zhou Li, Tang Lisong, et al. Photodegradation of plant litter in a temperate desert along a precipitation gradient[J]. Chinese Journal of Ecology, 2013,32(10):2574-2582. ] | |
[38] | 张慧玲, 宋新章, 哀建国, 等. 增强紫外线-B辐射对凋落物分解的影响研究综述[J]. 浙江林学院学报, 2010,27(1):134-142. |
[ Zhang Huiling, Song Xinzhang, Ai Jianguo, et al. A review of UV-B radiation and its influence on litter decomposition[J]. Journal of Zhejiang A & F University, 2010,27(1):134-142. ] | |
[39] |
Wu T, Su F, Han H, et al. Responses of soil microarthropods to warming and increased precipitation in a semiarid temperate steppe[J]. Applied Soil Ecology, 2014,84:200-207.
doi: 10.1016/j.apsoil.2014.07.003 |
[40] | 殷秀琴, 仲伟彦, 王海霞, 等. 小兴安岭森林落叶分解与土壤动物的作用[J]. 地理研究, 2002,21(6):689-699. |
[ Yin Xiuqin, Zhong Weiyan, Wang Haixia, et al. Decomposition of forest defoliation and role of soil animals in Xiao Hinggan Mountains[J]. Geographical Research, 2002,21(6):689-699. ] | |
[41] |
Bokhorst S, Convey P, Huiskes A, et al. Dwarf shrub and grass vegetation resistant to long-term experimental warming while microarthropod abundance declines on the Falkland Islands[J]. Austral Ecology, 2017,42(8):984-994.
doi: 10.1111/aec.2017.42.issue-8 |
[42] | Huang Y M, Zhang J, Yang W Q, et al. Response of soil faunal community to simulated understory plant loss in the subalpine coniferous plantation of western Sichuan[J]. Acta Ecologica Sinica, 2010,30(8):2018-2025. |
[43] |
Jean-François D, Tanya H I. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change[J]. Biological Reviews of the Cambridge Philosophical Society, 2010,85(4):881-895.
doi: 10.1111/j.1469-185X.2010.00138.x pmid: 20412191 |
[44] | 德海山, 红梅, 赵巴音那木拉, 等. 模拟增温、施氮对荒漠草原土壤中小型动物群落的影响[J]. 干旱区资源与环境, 2016,30(6):122-128. |
[ De Haishan, Hong Mei, Zhao Bayinnamula, et al. Effect of simulated warming and N addition on soil mesofauna community in desert steppe of Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2016,30(6):122-128. ] | |
[45] | Koltz A M, Classen A T, Wright J P. Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(32):7541-7549. |
[46] | Neher D A, Weicht T R, Moorhead D L, et al. Elevated CO2 alters functional attributes of nematode communities in forest soils[J]. Functional Ecology, 2004,18(4):37-44. |
[47] |
Dijkstra F A, Augustine D J, Brewer P, et al. Nitrogen cycling and water pulses in semiarid grasslands: Are microbial and plant processes temporally asynchronous?[J]. Oecologia, 2012,170(3):799-808.
doi: 10.1007/s00442-012-2336-6 pmid: 22555358 |
[48] |
Jenerette G D, Chatterjee A. Soil metabolic pulses: Water, substrate, and biological regulation[J]. Ecology, 2012,93(5):959-966.
pmid: 22764482 |
[49] |
Wang S J, Ruan H H, Wang B, et al. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains[J]. Soil Biology and Biochemistry, 2009,41(5):891-897.
doi: 10.1016/j.soilbio.2008.12.016 |
[50] |
Kaneda S, Kaneko N. Influence of Collembola on nitrogen mineralization varies with soil moisture content[J]. Soil Science and Plant Nutrition, 2011,57(1):40-49.
doi: 10.1080/00380768.2010.551107 |
[51] |
Blankinship J C, Niklaus P A, Hungate B A. A meta-analysis of responses of soil biota to global change[J]. Oecologia, 2011,165(3):553-565.
doi: 10.1007/s00442-011-1909-0 pmid: 21274573 |
[52] | 刘继亮, 李锋瑞, 刘七军, 等. 黑河中游干旱荒漠地面节肢动物群落季节变异规律[J]. 草业学报, 2010,19(5):161-169. |
[ Liu Jiliang, Li Fengrui, Liu Qijun, et al. Seasonal variation of ground dwelling arthropod communities in an arid desert of the middle Heihe River basin[J]. Acta Prataculturae Sinica, 2010,19(5):161-169. ] | |
[53] | Landesman W J, Treonis A M, Dighton J. Effects of a one-year rainfall manipulation on soil nematode abundances and community composition[J]. Pedobiologia-International Journal of Soil Biology, 2010,54(2):87-91. |
[54] | Hunt H W, Coleman D C, Ingham E R, et al. The detrital food web in a shortgrass prairie[J]. Biology and Fertility of Soils, 1987,3(1):57-68. |
[55] |
Nieminen J K, Setl H. Influence of carbon and nutrient additions on a decomposer food chain and the growth of pine seedlings in microcosms-ScienceDirect[J]. Applied Soil Ecology, 2001,17(3):189-197.
doi: 10.1016/S0929-1393(01)00139-1 |
[56] | Hooper D U, Johnson L. Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation[J]. Biogeochemistry, 1999,46:247-293. |
[57] |
Coleman D C. From peds to paradoxes: Linkages between soil biota and their influences on ecological processes[J]. Soil Biology and Biochemistry, 2008,40(2):271-289.
doi: 10.1016/j.soilbio.2007.08.005 |
[58] |
Wu P F, Wang C T. Differences in spatiotemporal dynamics between soil macrofauna and mesofauna communities in forest ecosystems: The significance for soil fauna diversity monitoring[J]. Geoderma, 2019,337(25):266-272.
doi: 10.1016/j.geoderma.2018.09.031 |
[59] | 美丽, 红梅, 赵巴音那木拉, 等. 水氮控制对荒漠草原中小型土壤动物群落的影响[J]. 西北农林科技大学学报(自然科学版), 2018,46(4):75-84. |
[ Mei Li, Hong Mei, Zhao Bayinnamula, et al. Effect of water and N treatment on meso-and micro-fauna communities in soil of desert steppe[J]. Journal of Northwest A&F University (Natural Science Edition), 2018,46(4):75-84. ] | |
[60] | Liu R, Steinberger Y. Seasonal distribution and diversity of ground-active arthropods between shrub microhabitats in the Negev Desert, Israel[J]. Arid Land Research & Management, 2017,32:91-110. |
[61] | 刘任涛, 郗伟华, 朱凡. 宁夏荒漠草原地面节肢动物群落组成及季节动态特征[J]. 草业学报, 2016,25(6):126-135. |
[ Liu Rentao, Xi Weihua, Zhu Fan. Community composition and seasonal dynamics of ground-dwelling arthropods in the desertified steppe of Ningxia[J]. Acta Prataculturae Sinica, 2016,25(6):126-135. ] | |
[62] | Alejandro D, Canepuccia, Cicchino A, et al. Differential responses of marsh arthropods to rainfall-induced habitat loss[J]. Zoological Studies, 2009,48(2):174-183. |
[63] | 吴福忠, 谭波. 森林凋落物分解过程与土壤动物的相互关系研究进展[J]. 四川农业大学学报, 2018,36(5):569-575. |
[ Wu Fuzhong, Tan Bo. A review on the interactions between soil fauna and forest litter decomposition[J]. Journal of Sichuan Agricultural University, 2018,36(5):569-575. ] | |
[64] | 严珺, 吴纪华. 植物多样性对土壤动物影响的研究进展[J]. 土壤, 2018,50(2):231-238. |
[ Yan Jun, Wu Jihua. Study advances in plant diversity effects on soil fauna[J]. Soils, 2018,50(2):231-238. ] | |
[65] | 王文君, 杨万勤, 谭波, 等. 四川盆地亚热带常绿阔叶林不同物候期凋落物分解与土壤动物群落结构的关系[J]. 生态学报, 2013,33(18):5737-5750. |
[ Wang Wenjun, Yang Wanqin, Tan Bo, et al. The dynamics of soil fauna community during litter decomposition at different phenological stages in the subtropical evergreen broad-leaved forests in Sichuan basin[J]. Acta Ecologica Sinica, 2013,33(18):5737-5750. ] | |
[66] | 谌亚, 杨万勤, 吴福忠, 等. 川西亚高山/高山森林土壤线虫多样性[J]. 应用生态学报, 2017,28(10):3360-3368. |
[ Kan Ya, Yang Wanqin, Wu Fuzhong, et al. Diversity of soil nematode communities in the subalpine and alpine forests of western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2017,28(10):3360-3368. ] | |
[67] | 谭波. 季节性冻融对川西亚高山/高山森林土壤动物群落的影响[D]. 成都: 四川农业大学, 2010. |
[ Tan Bo. Soil Fauna Community in the Subalpine/Alpine Forests of Western Sichuan as Affected by Seasonal Freeze-thas[D]. Chengdu: Sichuan Agricultural University, 2010. ] | |
[68] |
Goncharov A A, Khramova E Y, Tiunov A V. Spatial variations in the trophic structure of soil animal communities in boreal forests of Pechora-Ilych Nature Reserve[J]. Eurasian Soil Science, 2014,47(5):441-448.
doi: 10.1134/S106422931405007X |
[69] |
Sanchez B C, Parmenter R R. Patterns of shrub-dwelling arthropod diversity across a desert shrubland-grassland ecotone: A test of island biogeographic theory[J]. Journal of Arid Environments, 2002,50(2):247-265.
doi: 10.1006/jare.2001.0920 |
[70] |
Holmstrup M, Damgaard C, Schmidt I K, et al. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland[J]. Scientific Reports, 2017,7:41388.
doi: 10.1038/srep41388 pmid: 28120893 |
[71] |
Holmstrup M, Maraldo K, Krogh P H. Combined effect of copper and prolonged summer drought on soil Microarthropods in the field[J]. Environmental Pollution, 2007,146(2):525-533.
doi: 10.1016/j.envpol.2006.07.013 |
[72] |
Daghighi E, Filser J, Koehler H, et al. Long-term succession of Collembola communities in relation to climate change and vegetation[J]. Pedobiologia, 2017,64:25-38.
doi: 10.1016/j.pedobi.2017.06.001 |
[73] | Warren M W, Zou X. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico[J]. Forest Ecology & Management, 2002,170(1-3):161-171. |
[74] |
Liu R T, Zhu F, Steinberger Y. Effectiveness of afforested shrub plantation on ground-active arthropod communities and trophic structure in desertified regions[J]. Catena, 2015,125(5):1-9.
doi: 10.1016/j.catena.2014.09.018 |
[75] | David J F, David J F. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change[J]. Biological Reviews, 2010,85(4):881-895. |
[76] |
Robinson J V. The effect of architectural variation in habitat on a spider community: An experimental field study[J]. Ecology, 1981,62(10):73-80.
doi: 10.2307/1936670 |
[77] |
Holmstrup M, Ehlers B K, Slotsbo S, et al. Functional diversity of Collembola is reduced in soils subjected to short-term, but not long-term, geothermal warming[J]. Functional Ecology, 2018,32(5):1304-1316.
doi: 10.1111/fec.2018.32.issue-5 |
[78] | 査同刚, 张志强, 孙阁, 等. 凋落物分解主场效应及其土壤生物驱动[J]. 生态学报, 2012,32(24):7991-8000. |
[ Zha Tonggang, Zhang Zhiqiang, Sun Ge, et al. Home-field advantage of litter decomposition and its soil biological driving mechanism: A review[J]. Acta Ecologica Sinica, 2012,32(24):7991-8000. ] | |
[79] |
Gholz H L, Wedin D A, et al. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition[J]. Global Change Biology, 2000,6(7):751-765.
doi: 10.1046/j.1365-2486.2000.00349.x |
[80] |
Nielsen U N, Osler G H R, Campbell C D, et al. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale[J]. Journal of Biogeography, 2010,37(7):1317-1328.
doi: 10.1111/jbi.2010.37.issue-7 |
[81] |
Kardol P, Reynolds W N, Norby R J, et al. Climate change effects on soil microarthropod abundance and community structure[J]. Applied Soil Ecology, 2011,47(1):37-44.
doi: 10.1016/j.apsoil.2010.11.001 |
[1] | 赵雨琪, 魏天兴. 1990—2020年黄土高原典型县域植被覆盖变化及影响因素[J]. 干旱区研究, 2024, 41(1): 147-156. |
[2] | 胡广录,陶虎,焦娇,白元儒,陈海志,麻进. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414-1424. |
[3] | 周小东, 常顺利, 王冠正, 张毓涛, 喻树龙, 张同文. 天山北坡中段雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2023, 40(8): 1215-1228. |
[4] | 孟乘枫, 仲涛, 郑江华, 王南, 刘泽轩, 任祥源. 昆仑山冰湖分布时空特征及驱动力[J]. 干旱区研究, 2023, 40(7): 1094-1106. |
[5] | 赵艳芬, 潘伯荣. 气候变化情景下革苞菊属在中国的潜在地理分布[J]. 干旱区研究, 2023, 40(6): 949-957. |
[6] | 姚春艳, 刘洪鹄, 刘竞. 长江源区1980—2020年水沙变化规律[J]. 干旱区研究, 2023, 40(5): 726-736. |
[7] | 戴君, 胡海珠, 毛晓敏, 张霁. 基于CMIP6多模式预估数据的石羊河流域未来气候变化趋势分析[J]. 干旱区研究, 2023, 40(10): 1547-1562. |
[8] | 姚岱均, 刘康, 惠俞翔, 王凯欣. 天水麦积山油松树轮宽度对气候变化的响应及其机制[J]. 干旱区研究, 2023, 40(1): 19-29. |
[9] | 陈红光, 孟凡浩, 萨楚拉, 罗敏, 王牧兰, 刘桂香. 北方牧区草原内陆河流域径流演变特征及其驱动因素分析[J]. 干旱区研究, 2023, 40(1): 39-50. |
[10] | 张昊琛,萨楚拉,孟凡浩,罗敏,王牧兰,高红豆. 内蒙古地表冻融指数动态变化与驱动因素分析[J]. 干旱区研究, 2022, 39(6): 1996-2008. |
[11] | 王靖文,唐志光,邓刚,胡国杰,桑国庆. 1991—2021年天山融雪末期雪线高度遥感监测研究[J]. 干旱区研究, 2022, 39(5): 1385-1397. |
[12] | 郭伊利,李书恒,王嘉川,韩宜洁. 芦芽山华北落叶松早晚材径向生长对气候变化响应的分离效应[J]. 干旱区研究, 2022, 39(5): 1449-1463. |
[13] | 王晓飞,黄粤,刘铁,李均力,王正,昝婵娟,段永超. 近60 a伊塞克湖水量平衡变化及影响因素分析[J]. 干旱区研究, 2022, 39(5): 1576-1587. |
[14] | 张赟鑫,郝海超,范连连,李耀明,张仁平,李凯辉. 中亚草地NPP时空动态及其驱动因素研究[J]. 干旱区研究, 2022, 39(3): 698-707. |
[15] | 张林,张云玲,马松梅,张丹,贺凌云. 准噶尔盆地大赖草分布格局及关键因子分析[J]. 干旱区研究, 2022, 39(3): 863-871. |
|