干旱区研究 ›› 2021, Vol. 38 ›› Issue (2): 369-379.doi: 10.13866/j.azr.2021.02.08
史红岩1,2(),冉立山3,4(),岳荣5,于瑞宏1,2,赵艳霞1,2,吕喜玺6
收稿日期:
2020-06-29
修回日期:
2020-08-26
出版日期:
2021-03-15
发布日期:
2021-04-25
通讯作者:
冉立山
作者简介:
史红岩(1996-),男,硕士研究生,主要研究方向为内陆水体温室气体逸出. E-mail:基金资助:
SHI Hongyan1,2(),RAN Lishan3,4(),YUE Rong5,YU Ruihong1,2,ZHAO Yanxia1,2,LYU Xixi6
Received:
2020-06-29
Revised:
2020-08-26
Online:
2021-03-15
Published:
2021-04-25
Contact:
Lishan RAN
摘要:
近年来内陆水体CO2释放受到广泛关注,为揭示黄土高原地区内陆水体CO2的释放特征,于2018年7月和10月及2019年3月和6月利用LI-7000 CO2分析仪对窟野河及代表性水库开展了高频次的水体CO2分压(pCO2)和水-气界面CO2交换通量(FCO2)观测,并分析其时空变化规律。结果表明:窟野河水体pCO2和FCO2(分别为996 μatm和94.5 mmol·m-2·d-1)均高于水库(分别为752 μatm和10.3 mmol·m-2·d-1)。FCO2季节性差异明显:对于河流而言,表现为秋季最高(165.7 mmol·m-2·d-1),春季最低(42.9 mmol·m-2·d-1);对于水库而言,变化趋势则完全相反,表现为春季最高(16.6 mmol·m-2·d-1),秋季最低(-5.4 mmol·m-2·d-1)。生物地球化学活性更强的支流FCO2(107.4 mmol·m-2·d-1)高出干流(66.5 mmol·m-2·d-1)约50%;同时,位于中下游黄土丘陵区的水库FCO2(16.4 mmol·m-2·d-1)显著高于位于上游呼鄂丘陵区的水库FCO2(1.2 mmol·m-2·d-1)。整体来看,流域水体pCO2受碳酸盐体系影响最大,有机碳分解作用次之;流速是控制水-气界面气体交换速率的关键因素。在年尺度上,窟野河的河流与水库水体均为大气持续碳源。窟野河平均CO2释放量与我国长江及国外温带河流相近,但低于黄河中游的其他支流。
史红岩,冉立山,岳荣,于瑞宏,赵艳霞,吕喜玺. 窟野河水-气界面CO2交换通量变化特征及其影响因素分析[J]. 干旱区研究, 2021, 38(2): 369-379.
SHI Hongyan,RAN Lishan,YUE Rong,YU Ruihong,ZHAO Yanxia,LYU Xixi. Variations of CO2 exchange in the Kuye River basin and its influencing factors[J]. Arid Zone Research, 2021, 38(2): 369-379.
表1
窟野河流域主要水环境因子"
采样日期 | 参数 | pH | 水温/℃ | Chl a/(μg·L-1) | DIC/(mg·L-1) | DOC/(mg·L-1) | 风速/(m·s-1) | 流速/(m·s-1) |
---|---|---|---|---|---|---|---|---|
2018年7月(夏季丰水期) | 最小值 | 8.0 | 16.7 | - | 28.8 | 1.6 | - | 0.1 |
最大值 | 9.4 | 33.8 | - | 63.4 | 18.4 | - | 0.9 | |
平均值 | 8.4 | 27.0 | - | 40.8 | 5.5 | - | 0.5 | |
标准偏差 | 0.5 | 5.5 | - | 10.8 | 5.8 | - | 0.3 | |
2018年10月(秋季) | 最小值 | 8.1 | 5.5 | 0.1 | 23.6 | 0.9 | 0.0 | 0.2 |
最大值 | 8.8 | 16.2 | 15.9 | 63.4 | 13.7 | 1.3 | 1.4 | |
平均值 | 8.5 | 10.8 | 4.7 | 45.5 | 4.4 | 0.6 | 0.6 | |
标准偏差 | 0.7 | 2.5 | 4.9 | 11.8 | 4.0 | 0.4 | 0.3 | |
2019年3月(春季) | 最小值 | 8.7 | 1.0 | 4.2 | 23.0 | 1.0 | 0.0 | 0.1 |
最大值 | 9.2 | 12.2 | 18.1 | 118.1 | 2.7 | 3.2 | 0.8 | |
平均值 | 8.8 | 6.6 | 9.1 | 58.1 | 1.6 | 1.0 | 0.4 | |
标准偏差 | 0.1 | 3.5 | 3.4 | 21.5 | 0.5 | 0.8 | 0.2 | |
2019年6月(夏季枯水期) | 最小值 | 8.6 | 19.5 | 2.4 | 28.8 | 0.1 | 0.0 | 0.0 |
最大值 | 9.5 | 32.3 | 18.8 | 83.5 | 2.2 | 2.0 | 1.4 | |
平均值 | 9.0 | 25.0 | 6.2 | 54.6 | 0.5 | 0.3 | 0.5 | |
标准偏差 | 0.3 | 3.9 | 4.2 | 14.5 | 0.7 | 0.7 | 0.3 |
表2
采样水库水环境因子"
日期 | 参数 | pH | 水温/℃ | Chl a/(μg·L-1) | DIC/(mg·L-1) | DOC/(mg·L-1) | 风速/(m·s-1) |
---|---|---|---|---|---|---|---|
2018年7月(夏季丰水期) | 最小值 | 8.2 | 27.7 | 2.9 | 26.5 | 2.6 | - |
最大值 | 9.0 | 34.9 | 5.5 | 91.2 | 7.5 | - | |
平均值 | 8.7 | 29.8 | 4.3 | 58.2 | 4.3 | - | |
标准偏差 | 0.4 | 3.5 | 1.1 | 26.9 | 2.3 | - | |
2018年10月(秋季) | 最小值 | 8.3 | 10.8 | 1.1 | 38.3 | 1.2 | 0.6 |
最大值 | 9.5 | 17.2 | 12.0 | 69.6 | 14.8 | 1.1 | |
平均值 | 8.9 | 12.9 | 5.7 | 48.8 | 4.2 | 0.8 | |
标准偏差 | 0.5 | 2.5 | 5.0 | 12.4 | 5.9 | 0.2 | |
2019年3月(春季) | 最小值 | 8.4 | 6.4 | 5.2 | 37.4 | 1.0 | 0.0 |
最大值 | 9.4 | 12.7 | 27.3 | 61.9 | 12.8 | 3.2 | |
平均值 | 8.7 | 8.8 | 11.4 | 48.0 | 5.2 | 1.0 | |
标准偏差 | 0.4 | 2.5 | 9.1 | 10.8 | 4.6 | 0.8 | |
2019年6月(夏季枯水期) | 最小值 | 8.8 | 24.2 | 3.4 | 40.3 | 0.2 | 0.0 |
最大值 | 9.6 | 30.0 | 6.0 | 101.4 | 17.5 | 2.0 | |
平均值 | 9.1 | 25.7 | 5.0 | 76.0 | 5.1 | 0.3 | |
标准偏差 | 0.3 | 2.4 | 1.1 | 24.4 | 7.2 | 0.7 |
表5
不同地区河流的水-气界面CO2逸出通量比较"
河流 | 位置 | 气候带 | pCO2/(μatm) | FCO2/(mmol·m-2·d-1) | 参考文献 |
---|---|---|---|---|---|
窟野河(黄河支流) | 中国 | 温带 | 941 | 94.5 | 本研究 |
无定河(黄河支流) | 中国 | 温带 | 881 | 168.6 | [18] |
头道拐(黄河干流) | 中国 | 温带 | 995 | 230.1 | [17] |
黄河(枯水、丰水期) | 中国 | 温带 | 2810 | 854.8 | [15] |
黄河(源区) | 中国 | 高原气候带 | 771 | 135.0 | [41] |
长江 | 中国 | 温带 | 1013 | 42.5~93.7 | [40] |
科罗拉多河 | 美国 | 温带 | 250~4000 | 35.9 | [42] |
阿尔卑斯山区Ybbs河 | 奥地利 | 温带 | 367~1169 | 86.0~290.1 | [43] |
西江 | 中国 | 亚热带 | 2600 | 172.6~356.2 | [30] |
亚马逊河 | 巴西 | 热带 | 141~9569 | 327.1 | [34] |
刚果河 | 刚果 | 热带 | 1087~22899 | 2469.0 | [44] |
[1] | Striegl R G, Dornblaser M M, Mcdonald C P, et al. Carbon dioxide and methane emissions from the Yukon River system[J]. Global Biogeochemical Cycles, 2012,26(4):GB0E05. |
[2] | Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007,10(1):171-184. |
[3] | Abril G, Martinez J M, Artigas L F, et al. Amazon River carbon dioxide outgassing fuelled by wetlands[J]. Nature, 2014,505(7483):395-398. |
[4] | Battin T J, Luyssaert S, Kaplan L A, et al. The boundless carbon cycle[J]. Nature Geoscience, 2009,2(9):598-600. |
[5] | Butman D, Stackpoole S, Stets E, et al. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting[J]. Proceedings of the National Academy of Sciences, 2016,113(1):58-63. |
[6] |
Raymond P A, Hartmann J, Lauerwald R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013,503(7476):355-359.
pmid: 24256802 |
[7] | Davidson E A, Figueiredo R O, Markewitz D, et al. Dissolved CO2 in small catchment streams of eastern Amazonia: A minor pathway of terrestrial carbon loss[J]. Journal of Geophysical Research: Biogeosciences, 2010,115(G4):470-479. |
[8] | 宋鲁萍. 黄河三角州滨海盐碱地CO2、N2O通量特征及影响因素研究[D]. 烟台: 中国科学院烟台海岸带研究所, 2014. |
[ Song Luping. Research on CO2、N2O Flux Characteristics and Influencing Factors of Coastal Saline-Alkali Land in Three California Yellow River[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2014. ] | |
[9] | 杨欢. 黄河中游pCO2的时空变化特征研究[D]. 呼和浩特: 内蒙古大学, 2015. |
[ Yang Huan. Study on the Characteristics of Spatio-temporal Variation of pCO2 in the Middle Reaches of the Yellow River[D]. Huhhot: Inner Mongolia University, 2015. ] | |
[10] | 慕星, 张晓明. 皇甫川流域水沙变化及驱动因素分析[J]. 干旱区研究, 2013,30(5):933-939. |
[ Mu Xing, Zhang Xiaoming. The variation of runoff volume and sediment load and its driving factors in Huangfuchuan River Watershed[J]. Arid Zone Research, 2013,30(5):933-939. ] | |
[11] | 袁水龙, 谢天明. 窟野河暴雨洪水泥沙特征分析[J]. 陕西水利, 2018(1):40-43. |
[ Yuan Shuilong, Xie Tianming. Analysis of the characteristics of the storm flood cement sand in Kuye River[J]. Shaanxi Water Resources, 2018(1):40-43. ] | |
[12] | Raymond P A, Zappa C J, Butman D, et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small riversr[J]. Limnology and Oceanography: Fluids and Environments, 2012,2(1):41-53. |
[13] | Ran L, Lu X X, Yang H, et al. CO2 outgassing from the Yellow River network and its implications for riverine carbon cycle[J]. Journal of Geophysical Research: Biogeosciences, 2015,120(7):1334-1347. |
[14] | 吴飞红. 典型岩溶溪流水-气界面CO2交换系数(k)及其影响因素研究[D]. 重庆: 西南大学, 2018. |
[ Wu Feihong. The Gas Exchange Coefficient (k) of CO2 and its Influencing Factors Across Water-Air Interface in a Typical Karst Groundwater-Fed Stream[D]. Chongqing: Southwest University, 2018. ] | |
[15] | Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research, 1992,97(5):7373-7382. |
[16] | 王宝森. 考虑耗水量估算黄河流域化学风化大气CO2消耗量[D]. 青岛: 中国海洋大学, 2011. |
[ Wang Baosen. Estimating CO2 Consumption of Chemical Weathering Atmosphere in the Yellow River Basin Considering Water Consumption[D]. Qingdao: Ocean University, 2011. ] | |
[17] | 李凌宇, 于瑞宏, 田明扬, 等. 黄河FCO2时空变化及其影响因素——以头道拐水文站为例[J]. 生态学报, 2017,37(22):7636-7646. |
[ Li Lingyu, Yu Ruihong, Tian Mingyang, et al. Spatial-temporal variations and influencing factors of carbon dioxide evasion from the Yellow River: An example of the Toudaoguai Gauging Station[J]. Acta Ecologica Sinica, 2017,37(22):7636-7646. ] | |
[18] | Ran L, Li L, Tian M, et al. Riverine CO2, emissions in the Wuding River catchment on the Loess Plateau: Environmental controls and dam impoundment impact[J]. Journal of Geophysical Research: Biogeosciences, 2017,122(6):1439-1455. |
[19] | Reiman J, Xu Y. Diel variability of pCO2 and CO2 outgassing from the lower Mississippi River: Implications for riverine CO2 outgassing estimation[J]. Water, 2018,11(13):2-15. |
[20] | Else B G T, Galley R G, Lansard B, et al. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss[J]. Geophysical Research Letters, 2013,40(6):1132-1137. |
[21] | 王建, 丁永建, 许民, 等. 天山科其喀尔冰川区复杂下垫面CO2通量贡献区分析[J]. 干旱区研究, 2018,35(6):1512-1520. |
[ Wang Jian, Ding Yongjian, Xu Min, et al. CO2 carbon flux over moraine area of the Koxkar Glacier in the Tianshan Mountains[J]. Arid Zone Research, 2018,35(6):1512-1520. ] | |
[22] | Duvert C, Bossa M, Tyler K J, et al. Groundwater-derived DIC and carbonate buffering enhance fluvial CO2 evasion in two Australian tropical rivers[J]. Global Biogeochemical Cycles, 2019,124(2):312-327. |
[23] | Stets E G, Butman D, Mcdonald C P, et al. Carbonate buffering and metabolic controls on carbon dioxide in rivers[J]. Global Biogeochemical Cycles, 2017,31(4):663-677. |
[24] | 宫辰, 杨现坤, 田明扬, 等. 黄河源区水库二氧化碳逸出暖季变化规律及影响因素分析——以刘家峡水库为例[J]. 环境科学学报, 2018,38(7):2919-2930. |
[ Gong Chen, Yang Xiankun, Tian Mingyang, et al. Variations of CO2 evasion from reservoirs and its influencing factors in warm season in the headwater region of the Yellow River: A case study of the Liujiaxia Reservoir[J]. Acta Scientiae Circumstantiae, 2018,38(7):2919-2930. ] | |
[25] | Krasakopoulou E, Rapsomanikis S, Papadopoulos A, et al. Partial pressure and air-sea CO2 flux in the Aegean Sea during February[J]. Continental Shelf Research, 2009,29(11-12):1477-1488. |
[26] | Zhang L J, Wang L, Cai W J, et al. Impact of human activities on organic carbon transport in the Yellow River[J]. Biogeosciences, 2013,10(4):2513-2524. |
[27] | Takahashi T, Olafsson J, Goddard J G, et al. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study[J]. Global Biogeochemical Cycles, 1993,7(4):843-878. |
[28] | 岳荣, 史红岩, 冉立山, 等. 融冰期与非融冰期水库CO2逸出昼夜变化及CO2分压影响因素研究[J]. 环境科学学报, 2020,40(2):320-328. |
[ Yue Rong, Shi Hongyan, Ran Lishan, et al. Study on diurnal variation of CO2 flux from reservoir and the influencing factors of partial pressure of CO2 in melting and non-melting seasons[J]. Acta Scientiae Circumstantiae, 2020,40(2):320-328. ] | |
[29] | Nebbioso A, Piccolo A. Molecular characterization of dissolved organic matter (DOM): A critical review[J]. Analytical and Bioanalytical Chemistry, 2013,405(1):109-124. |
[30] | Yao G, Gao Q, Wang Z, et al. Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China[J]. Science of the Total Environment, 2007,376(1-3):255-266. |
[31] | Halbedel S, Koschorreck M. Regulation of CO2 emissions from temperate streams and reservoirs[J]. Biogeosciences, 2013,10(11):7539-7551. |
[32] | Tamooh F, Meysman F J R, Borges A V, et al. Sediment and carbon fluxes along a longitudinal gradient in the lower Tana River (Kenya)[J]. Journal of Geophysical Research: Biogeosciences, 2014,119(7):1340-1353. |
[33] | Chun L Y, Qiang L C, Lu W S, et al. Seasonal variability of pCO2 in the two karst reservoirs, Hongfeng and Baihua Lakes in Guizhou Province, China[J]. Environmental Science, 2007,28(12):2674-2681. |
[34] | Alin Simone R, Rasera Maria de Fátima F L, Salimon Cleber I, et al. physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets[J]. Journal of Geophysical Research: Biogeosciences, 2011,116(1):241-259. |
[35] | 陈银波. 喀斯特小流域水-气界面二氧化碳释放及其影响因素研究[D]. 贵阳: 贵州大学, 2019. |
[ Chen Yinbo. Carbon Dioxide Release from Water-air Interface in Karst Watershed and its Influencing Factors: A Case Study of Aha Lake into the Lake[D]. Guiyang: Guizhou University, 2019. ] | |
[36] | 王钰祺, 吕东珂. 泥河水库秋季水-气界面CO2通量日变化特征及影响因子分析[J]. 森林工程, 2011,27(2):19-22. |
[ Wang Yuqi, Lyu Dongke. Analysis on influencing factors and diurnal variation of CO2 fluxes across water-air interface of Nihe reservoir in autumn[J]. Forest Engineering, 2011,27(2):19-22. ] | |
[37] | 吕东珂. 哈尔滨周边泥炭型水库水-气界面CO2通量研究[D]. 哈尔滨: 东北林业大学, 2013. |
[ Lyu Dongke. Study on CO2 Flux at the Water-air Interface of Peatland Reservoirs Around Harbin[D]. Harbin: Northeast Forestry University, 2013. ] | |
[38] | Wanninkhof R, Triñanes J. The impact of changing wind speeds on gas transfer and its effect on global air-sea CO2 fluxes[J]. Global Biogeochemical Cycles, 2017,31(6):961-974. |
[39] | Crusius J, Wanninkhof R. Gas transfer velocities measured at low wind speed over a lake[J]. Limnology and Oceanography, 2003,48(3):1010-1017. |
[40] | Zhai W, Dai M, Guo X, et al. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China[J]. Marine Chemistry, 2007,107(3):342-356. |
[41] | Tian M, Yang X, Ran L, et al. Impact of land cover types on riverine CO2 outgassing in the Yellow River source region[J]. Water, 2019,11(11):18. |
[42] | Crawford J T, Dornblaser M M, Stanley E H, et al. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes[J]. Journal of Geophysical Research: Biogeosciences, 2015,120(5):952-964. |
[43] | Schelker J, Singer G A, Ulseth A J, et al. CO2 evasion from a steep, high gradient stream network: Importance of seasonal and diurnal variation in aquatic pCO2 and gas transfer[J]. Limnology and Oceanography, 2016,61(5):1826-1838. |
[44] | Borges A V, Darchambeau F, Lambert T, et al. Variations of dissolved greenhouse gases (CO2, CH4, N2O) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity[J]. Biogeoences Discussions, 2019,16(19):3801-3834. |
[45] | 梁顺田, 王雨春, 胡明明, 等. 夏季朱衣河二氧化碳分压分布特征及影响因素分析[J]. 中国水利水电科学研究院学报, 2017,15(2):153-160. |
[ Liang Shuntian, Wang Yuchun, Hu Mingming, et al. Distributions of partial pressure of carbon dioxide and its affecting factors in the Zhuyi River in summer[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017,15(2):153-160. ] | |
[46] | Aufdenkampe A K, Mayorga E, Raymond P A, et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere[J]. Frontiers in Ecology and the Environment, 2011,9(1):53-60. |
[47] | Elizabeth León-Palmero, Rafael Morales-Baquero, Isabel Reche. Greenhouse gas fluxes from reservoirs determined by watershed lithology, morphometry, and anthropogenic pressure[J]. Environmental Research Letters, 2020,15(4):1-12. |
[48] | Drake T W, Raymond P A, Spencer R G M. Terrestrial carbon inputs to inland waters: A current synjournal of estimates and uncertainty[J]. Limnology and Oceanography Letters, 2018,3(3):132-142. |
[1] | 刘一丹, 姚晓军, 李宗省, 胡家瑜. 气候变化和土地利用覆盖变化对河西地区植被净初级生产力的影响[J]. 干旱区研究, 2024, 41(1): 169-180. |
[2] | 马振刚,李黎黎,张俊贵. 官厅和密云水库水域面积变化及影响因素比较研究[J]. 干旱区研究, 2023, 40(8): 1229-1239. |
[3] | 文妙霞, 何学高, 刘欢, 张婧, 罗晨, 贾丰铭, 王义贵, 胡云云. 基于地理探测器的宁夏草地植被覆被时空分异及驱动因子[J]. 干旱区研究, 2023, 40(8): 1322-1332. |
[4] | 李虹, 李忠勤, 陈普晨, 彭加加. 近20 a新疆阿尔泰山积雪时空变化及其影响因素[J]. 干旱区研究, 2023, 40(7): 1040-1051. |
[5] | 王士维, 孙栋元, 周敏, 王亦可, 王祥镔, 季宗虎, 张文睿, 武兰珍. 1951—2020年疏勒河流域气温时空变化特征[J]. 干旱区研究, 2023, 40(7): 1065-1074. |
[6] | 赵卓怡, 郝兴明. 基于Priestley-Taylor方法的中亚干旱区实际蒸散特征及归因[J]. 干旱区研究, 2023, 40(7): 1085-1093. |
[7] | 薛一波, 张小啸, 雷加强, 李生宇, 王永东, 尤源. 北非埃及地区风蚀沙尘时空变化研究[J]. 干旱区研究, 2023, 40(6): 896-904. |
[8] | 任丽雯, 王兴涛, 刘明春, 王大为. 石羊河流域植被净初级生产力时空变化及驱动因素[J]. 干旱区研究, 2023, 40(5): 818-828. |
[9] | 李鑫磊, 李瑞平, 王秀青, 王思楠, 王成坤. 基于地理探测器的河套灌区林草植被覆盖度时空变化与驱动力分析[J]. 干旱区研究, 2023, 40(4): 623-635. |
[10] | 康利刚, 曹生奎, 曹广超, 杨羽帆, 严莉, 王有财. 青海湖沙柳河流域蒸散发时空变化特征[J]. 干旱区研究, 2023, 40(3): 358-372. |
[11] | 许丽婷,刘海红,黄丽洁,王钰帆. 2000—2020年汾河流域生态环境与水源涵养时空变化[J]. 干旱区研究, 2023, 40(2): 313-325. |
[12] | 侯文兵, 李开明, 黄卓. 近20 a河西地区绿洲效应时空变化特征及归因分析[J]. 干旱区研究, 2023, 40(12): 2031-2042. |
[13] | 肖森天, 依力亚斯江·努尔麦麦提, 努尔比耶·穆合塔尔, 赵静, 阿迪莱·阿卜来提. 基于光学和雷达多源遥感的于田绿洲土壤盐渍化时空分析[J]. 干旱区研究, 2023, 40(1): 59-68. |
[14] | 姚佳,陈启慧,李琼芳,崔罡,张良憬. 伊犁河—巴尔喀什湖流域实际蒸散发时空变化特征及其环境影响因子[J]. 干旱区研究, 2022, 39(5): 1564-1575. |
[15] | 冶晓娟,王永辉,潘红忠,白钰,董得福,姚华明. 青海省植被NEP时空变化及驱动因素分析[J]. 干旱区研究, 2022, 39(5): 1673-1683. |
|