[1] |
Striegl R G, Dornblaser M M, Mcdonald C P, et al. Carbon dioxide and methane emissions from the Yukon River system[J]. Global Biogeochemical Cycles, 2012,26(4):GB0E05.
|
[2] |
Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007,10(1):171-184.
|
[3] |
Abril G, Martinez J M, Artigas L F, et al. Amazon River carbon dioxide outgassing fuelled by wetlands[J]. Nature, 2014,505(7483):395-398.
|
[4] |
Battin T J, Luyssaert S, Kaplan L A, et al. The boundless carbon cycle[J]. Nature Geoscience, 2009,2(9):598-600.
|
[5] |
Butman D, Stackpoole S, Stets E, et al. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting[J]. Proceedings of the National Academy of Sciences, 2016,113(1):58-63.
|
[6] |
Raymond P A, Hartmann J, Lauerwald R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013,503(7476):355-359.
pmid: 24256802
|
[7] |
Davidson E A, Figueiredo R O, Markewitz D, et al. Dissolved CO2 in small catchment streams of eastern Amazonia: A minor pathway of terrestrial carbon loss[J]. Journal of Geophysical Research: Biogeosciences, 2010,115(G4):470-479.
|
[8] |
宋鲁萍. 黄河三角州滨海盐碱地CO2、N2O通量特征及影响因素研究[D]. 烟台: 中国科学院烟台海岸带研究所, 2014.
|
|
[ Song Luping. Research on CO2、N2O Flux Characteristics and Influencing Factors of Coastal Saline-Alkali Land in Three California Yellow River[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2014. ]
|
[9] |
杨欢. 黄河中游pCO2的时空变化特征研究[D]. 呼和浩特: 内蒙古大学, 2015.
|
|
[ Yang Huan. Study on the Characteristics of Spatio-temporal Variation of pCO2 in the Middle Reaches of the Yellow River[D]. Huhhot: Inner Mongolia University, 2015. ]
|
[10] |
慕星, 张晓明. 皇甫川流域水沙变化及驱动因素分析[J]. 干旱区研究, 2013,30(5):933-939.
|
|
[ Mu Xing, Zhang Xiaoming. The variation of runoff volume and sediment load and its driving factors in Huangfuchuan River Watershed[J]. Arid Zone Research, 2013,30(5):933-939. ]
|
[11] |
袁水龙, 谢天明. 窟野河暴雨洪水泥沙特征分析[J]. 陕西水利, 2018(1):40-43.
|
|
[ Yuan Shuilong, Xie Tianming. Analysis of the characteristics of the storm flood cement sand in Kuye River[J]. Shaanxi Water Resources, 2018(1):40-43. ]
|
[12] |
Raymond P A, Zappa C J, Butman D, et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small riversr[J]. Limnology and Oceanography: Fluids and Environments, 2012,2(1):41-53.
|
[13] |
Ran L, Lu X X, Yang H, et al. CO2 outgassing from the Yellow River network and its implications for riverine carbon cycle[J]. Journal of Geophysical Research: Biogeosciences, 2015,120(7):1334-1347.
|
[14] |
吴飞红. 典型岩溶溪流水-气界面CO2交换系数(k)及其影响因素研究[D]. 重庆: 西南大学, 2018.
|
|
[ Wu Feihong. The Gas Exchange Coefficient (k) of CO2 and its Influencing Factors Across Water-Air Interface in a Typical Karst Groundwater-Fed Stream[D]. Chongqing: Southwest University, 2018. ]
|
[15] |
Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research, 1992,97(5):7373-7382.
|
[16] |
王宝森. 考虑耗水量估算黄河流域化学风化大气CO2消耗量[D]. 青岛: 中国海洋大学, 2011.
|
|
[ Wang Baosen. Estimating CO2 Consumption of Chemical Weathering Atmosphere in the Yellow River Basin Considering Water Consumption[D]. Qingdao: Ocean University, 2011. ]
|
[17] |
李凌宇, 于瑞宏, 田明扬, 等. 黄河FCO2时空变化及其影响因素——以头道拐水文站为例[J]. 生态学报, 2017,37(22):7636-7646.
|
|
[ Li Lingyu, Yu Ruihong, Tian Mingyang, et al. Spatial-temporal variations and influencing factors of carbon dioxide evasion from the Yellow River: An example of the Toudaoguai Gauging Station[J]. Acta Ecologica Sinica, 2017,37(22):7636-7646. ]
|
[18] |
Ran L, Li L, Tian M, et al. Riverine CO2, emissions in the Wuding River catchment on the Loess Plateau: Environmental controls and dam impoundment impact[J]. Journal of Geophysical Research: Biogeosciences, 2017,122(6):1439-1455.
|
[19] |
Reiman J, Xu Y. Diel variability of pCO2 and CO2 outgassing from the lower Mississippi River: Implications for riverine CO2 outgassing estimation[J]. Water, 2018,11(13):2-15.
|
[20] |
Else B G T, Galley R G, Lansard B, et al. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss[J]. Geophysical Research Letters, 2013,40(6):1132-1137.
|
[21] |
王建, 丁永建, 许民, 等. 天山科其喀尔冰川区复杂下垫面CO2通量贡献区分析[J]. 干旱区研究, 2018,35(6):1512-1520.
|
|
[ Wang Jian, Ding Yongjian, Xu Min, et al. CO2 carbon flux over moraine area of the Koxkar Glacier in the Tianshan Mountains[J]. Arid Zone Research, 2018,35(6):1512-1520. ]
|
[22] |
Duvert C, Bossa M, Tyler K J, et al. Groundwater-derived DIC and carbonate buffering enhance fluvial CO2 evasion in two Australian tropical rivers[J]. Global Biogeochemical Cycles, 2019,124(2):312-327.
|
[23] |
Stets E G, Butman D, Mcdonald C P, et al. Carbonate buffering and metabolic controls on carbon dioxide in rivers[J]. Global Biogeochemical Cycles, 2017,31(4):663-677.
|
[24] |
宫辰, 杨现坤, 田明扬, 等. 黄河源区水库二氧化碳逸出暖季变化规律及影响因素分析——以刘家峡水库为例[J]. 环境科学学报, 2018,38(7):2919-2930.
|
|
[ Gong Chen, Yang Xiankun, Tian Mingyang, et al. Variations of CO2 evasion from reservoirs and its influencing factors in warm season in the headwater region of the Yellow River: A case study of the Liujiaxia Reservoir[J]. Acta Scientiae Circumstantiae, 2018,38(7):2919-2930. ]
|
[25] |
Krasakopoulou E, Rapsomanikis S, Papadopoulos A, et al. Partial pressure and air-sea CO2 flux in the Aegean Sea during February[J]. Continental Shelf Research, 2009,29(11-12):1477-1488.
|
[26] |
Zhang L J, Wang L, Cai W J, et al. Impact of human activities on organic carbon transport in the Yellow River[J]. Biogeosciences, 2013,10(4):2513-2524.
|
[27] |
Takahashi T, Olafsson J, Goddard J G, et al. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study[J]. Global Biogeochemical Cycles, 1993,7(4):843-878.
|
[28] |
岳荣, 史红岩, 冉立山, 等. 融冰期与非融冰期水库CO2逸出昼夜变化及CO2分压影响因素研究[J]. 环境科学学报, 2020,40(2):320-328.
|
|
[ Yue Rong, Shi Hongyan, Ran Lishan, et al. Study on diurnal variation of CO2 flux from reservoir and the influencing factors of partial pressure of CO2 in melting and non-melting seasons[J]. Acta Scientiae Circumstantiae, 2020,40(2):320-328. ]
|
[29] |
Nebbioso A, Piccolo A. Molecular characterization of dissolved organic matter (DOM): A critical review[J]. Analytical and Bioanalytical Chemistry, 2013,405(1):109-124.
|
[30] |
Yao G, Gao Q, Wang Z, et al. Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China[J]. Science of the Total Environment, 2007,376(1-3):255-266.
|
[31] |
Halbedel S, Koschorreck M. Regulation of CO2 emissions from temperate streams and reservoirs[J]. Biogeosciences, 2013,10(11):7539-7551.
|
[32] |
Tamooh F, Meysman F J R, Borges A V, et al. Sediment and carbon fluxes along a longitudinal gradient in the lower Tana River (Kenya)[J]. Journal of Geophysical Research: Biogeosciences, 2014,119(7):1340-1353.
|
[33] |
Chun L Y, Qiang L C, Lu W S, et al. Seasonal variability of pCO2 in the two karst reservoirs, Hongfeng and Baihua Lakes in Guizhou Province, China[J]. Environmental Science, 2007,28(12):2674-2681.
|
[34] |
Alin Simone R, Rasera Maria de Fátima F L, Salimon Cleber I, et al. physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets[J]. Journal of Geophysical Research: Biogeosciences, 2011,116(1):241-259.
|
[35] |
陈银波. 喀斯特小流域水-气界面二氧化碳释放及其影响因素研究[D]. 贵阳: 贵州大学, 2019.
|
|
[ Chen Yinbo. Carbon Dioxide Release from Water-air Interface in Karst Watershed and its Influencing Factors: A Case Study of Aha Lake into the Lake[D]. Guiyang: Guizhou University, 2019. ]
|
[36] |
王钰祺, 吕东珂. 泥河水库秋季水-气界面CO2通量日变化特征及影响因子分析[J]. 森林工程, 2011,27(2):19-22.
|
|
[ Wang Yuqi, Lyu Dongke. Analysis on influencing factors and diurnal variation of CO2 fluxes across water-air interface of Nihe reservoir in autumn[J]. Forest Engineering, 2011,27(2):19-22. ]
|
[37] |
吕东珂. 哈尔滨周边泥炭型水库水-气界面CO2通量研究[D]. 哈尔滨: 东北林业大学, 2013.
|
|
[ Lyu Dongke. Study on CO2 Flux at the Water-air Interface of Peatland Reservoirs Around Harbin[D]. Harbin: Northeast Forestry University, 2013. ]
|
[38] |
Wanninkhof R, Triñanes J. The impact of changing wind speeds on gas transfer and its effect on global air-sea CO2 fluxes[J]. Global Biogeochemical Cycles, 2017,31(6):961-974.
|
[39] |
Crusius J, Wanninkhof R. Gas transfer velocities measured at low wind speed over a lake[J]. Limnology and Oceanography, 2003,48(3):1010-1017.
|
[40] |
Zhai W, Dai M, Guo X, et al. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China[J]. Marine Chemistry, 2007,107(3):342-356.
|
[41] |
Tian M, Yang X, Ran L, et al. Impact of land cover types on riverine CO2 outgassing in the Yellow River source region[J]. Water, 2019,11(11):18.
|
[42] |
Crawford J T, Dornblaser M M, Stanley E H, et al. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes[J]. Journal of Geophysical Research: Biogeosciences, 2015,120(5):952-964.
|
[43] |
Schelker J, Singer G A, Ulseth A J, et al. CO2 evasion from a steep, high gradient stream network: Importance of seasonal and diurnal variation in aquatic pCO2 and gas transfer[J]. Limnology and Oceanography, 2016,61(5):1826-1838.
|
[44] |
Borges A V, Darchambeau F, Lambert T, et al. Variations of dissolved greenhouse gases (CO2, CH4, N2O) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity[J]. Biogeoences Discussions, 2019,16(19):3801-3834.
|
[45] |
梁顺田, 王雨春, 胡明明, 等. 夏季朱衣河二氧化碳分压分布特征及影响因素分析[J]. 中国水利水电科学研究院学报, 2017,15(2):153-160.
|
|
[ Liang Shuntian, Wang Yuchun, Hu Mingming, et al. Distributions of partial pressure of carbon dioxide and its affecting factors in the Zhuyi River in summer[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017,15(2):153-160. ]
|
[46] |
Aufdenkampe A K, Mayorga E, Raymond P A, et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere[J]. Frontiers in Ecology and the Environment, 2011,9(1):53-60.
|
[47] |
Elizabeth León-Palmero, Rafael Morales-Baquero, Isabel Reche. Greenhouse gas fluxes from reservoirs determined by watershed lithology, morphometry, and anthropogenic pressure[J]. Environmental Research Letters, 2020,15(4):1-12.
|
[48] |
Drake T W, Raymond P A, Spencer R G M. Terrestrial carbon inputs to inland waters: A current synjournal of estimates and uncertainty[J]. Limnology and Oceanography Letters, 2018,3(3):132-142.
|