干旱区研究 ›› 2025, Vol. 42 ›› Issue (5): 852-865.doi: 10.13866/j.azr.2025.05.08 cstr: 32277.14.AZR.20250508
顾虎利1,2(
), 周海1(
), 何志斌1, 陈国鹏2, 任珩1, 范明彦1,3
收稿日期:2024-12-09
修回日期:2025-01-08
出版日期:2025-05-15
发布日期:2025-10-22
通讯作者:
周海. E-mail: zhouhai1201@lzb.ac.cn作者简介:顾虎利(1999-),男,硕士研究生,主要从事干旱区植物生态研究. E-mail: guhuli2023@163.com
基金资助:
GU Huli1,2(
), ZHOU Hai1(
), HE Zhibin1, CHEN Guopeng2, REN Heng1, FAN Mingyan1,3
Received:2024-12-09
Revised:2025-01-08
Published:2025-05-15
Online:2025-10-22
摘要:
为揭示四翅滨藜(Atriplex canescens)幼苗对盐碱胁迫的适应能力,采用盆栽控制试验方法,研究四翅滨藜幼苗生物量、根系生长、光合生理特性、水分利用效率对不同浓度盐碱胁迫的响应。结果表明:(1) 0~100 mmol·L-1盐碱溶液胁迫下,对四翅滨藜幼苗细根长度、细根表面积、比根长、比根面积、根组织密度、总根系长度、总根体积、总根表面积和总根平均直径均有显著促进作用。(2) 溶液浓度大于150 mmol·L-1后,随着盐碱胁迫浓度增加与胁迫时间延长,各项生物量和根系参数均显著减小。(3) 随着盐碱胁迫时间延长,净光合速率、蒸腾速率和气孔导度持续下降,下降程度与溶液浓度呈正相关。(4) 瞬时水分利用效率和内在水分利用效率随着胁迫时长逐渐增大。研究揭示了四翅滨藜幼苗在应对不同浓度盐碱胁迫与不同胁迫时长下的生长关系,为盐碱地治理提供四翅滨藜幼苗适应性生长的科学依据。
顾虎利, 周海, 何志斌, 陈国鹏, 任珩, 范明彦. 盐碱胁迫对四翅滨藜幼苗细根生长与光合生理特性的影响[J]. 干旱区研究, 2025, 42(5): 852-865.
GU Huli, ZHOU Hai, HE Zhibin, CHEN Guopeng, REN Heng, FAN Mingyan. Effects of saline-alkali stress on the fine root growth and photosynthetic physiological characteristics of Atriplex canescens seedlings[J]. Arid Zone Research, 2025, 42(5): 852-865.
表1
盐碱胁迫条件及株高"
| 胁迫类型 | 胁迫天数/d | 胁迫浓度/(mmol·L-1) | 植株平均高度/cm | 土壤含盐量/% | 土壤碱化度/% | 土壤pH |
|---|---|---|---|---|---|---|
| NaCl+NaHCO3 复合盐碱胁迫 | 5 | 0(CK) | 6.67 | 0.02 | 1.07 | 6.92 |
| 50 | 6.84 | 0.06 | 3.26 | 7.08 | ||
| 100 | 7.45 | 0.12 | 4.59 | 7.68 | ||
| 150 | 6.78 | 0.20 | 5.63 | 7.93 | ||
| 200 | 6.53 | 0.28 | 7.98 | 8.08 | ||
| 250 | 6.36 | 0.37 | 9.26 | 8.44 | ||
| 300 | 6.09 | 0.46 | 11.67 | 8.89 | ||
| 10 | 0(CK) | 7.79 | 0.03 | 1.15 | 7.03 | |
| 50 | 8.45 | 0.11 | 4.12 | 7.33 | ||
| 100 | 8.62 | 0.21 | 6.07 | 7.92 | ||
| 150 | 7.76 | 0.27 | 7.64 | 8.08 | ||
| 200 | 7.83 | 0.39 | 10.42 | 8.63 | ||
| 250 | 6.65 | 0.45 | 11.32 | 8.97 | ||
| 300 | 6.25 | 0.55 | 13.45 | 9.01 | ||
| 15 | 0(CK) | 8.24 | 0.04 | 1.94 | 7.08 | |
| 50 | 10.35 | 0.14 | 4.38 | 7.46 | ||
| 100 | 9.07 | 0.29 | 6.53 | 8.13 | ||
| 150 | 7.80 | 0.38 | 8.03 | 8.27 | ||
| 200 | 7.85 | 0.48 | 10.97 | 8.74 | ||
| 250 | 7.34 | 0.54 | 11.88 | 9.00 | ||
| 300 | 6.33 | 0.65 | 13.75 | 9.19 | ||
| 20 | 0(CK) | 9.42 | 0.05 | 2.86 | 7.14 | |
| 50 | 13.53 | 0.16 | 6.55 | 7.67 | ||
| 100 | 9.92 | 0.35 | 7.53 | 8.22 | ||
| 150 | 7.84 | 0.46 | 8.93 | 8.38 | ||
| 200 | 7.89 | 0.56 | 11.39 | 8.81 | ||
| 250 | 7.90 | 0.67 | 12.61 | 9.03 | ||
| 300 | 6.57 | 0.76 | 14.42 | 9.38 | ||
| 25 | 0(CK) | 9.78 | 0.07 | 3.05 | 7.19 | |
| 50 | 13.60 | 0.18 | 6.64 | 7.82 | ||
| 100 | 10.12 | 0.42 | 7.97 | 8.34 | ||
| 150 | 8.02 | 0.54 | 9.33 | 8.56 | ||
| 200 | 8.13 | 0.64 | 11.76 | 8.87 | ||
| 250 | 7.97 | 0.72 | 12.97 | 9.15 | ||
| 300 | 6.75 | 0.89 | 14.81 | 9.44 | ||
| 30 | 0(CK) | 10.01 | 0.09 | 3.26 | 7.23 | |
| 50 | 13.65 | 0.19 | 6.72 | 7.93 | ||
| 100 | 10.40 | 0.48 | 8.15 | 8.42 | ||
| 150 | 8.32 | 0.66 | 10.23 | 8.68 | ||
| 200 | 8.43 | 0.76 | 12.03 | 8.91 | ||
| 250 | 8.12 | 0.83 | 13.57 | 9.23 | ||
| 300 | 6.96 | 1.02 | 15.38 | 9.51 |
| [1] | 马建华, 郑海雷. 植物耐盐的分子生物学基础[J]. 生物学杂志, 2007, 25(1): 5-8, 4. |
| [Ma Jianhua, Zheng Hailei. Molecular biological basis of salt tolerance in plants[J]. Journal of Biology, 2007, 25(1): 5-8, 4.] | |
| [2] | Yan S, Tang Z, Su W, et al. Proteomic analysis of salt stress-responsive proteins in rice root[J]. Proteomics, 2005, 5(1): 235-244. |
| [3] | Wang J, Yao L, Li B, et al. Comparative proteomic analysis of cultured suspension cells of the halophyte Halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress[J]. Frontiers in Plant Science, 2016, 7(30): 110. |
| [4] | 李彦, 张英鹏, 孙明, 等. 盐分胁迫对植物的影响及植物耐盐机理研究进展[J]. 中国农学通报, 2008, 24(1): 258-265. |
| [Li Yan, Zhang Yingpeng, Sun Ming, et al. Research advance in the effects of salt stress on plant and the mechanism of plant resistance[J]. Chinese Agricultural Science Bulletin, 2008, 24(1): 258-265.] | |
| [5] | Finér L, Ohashi M, Noguchi K, et al. Factors causing variation in fine root biomass in forest ecosystems[J]. Forest Ecology and Management, 2011, 261(2): 265-277. |
| [6] | Hendricks J J, Nadelhoffer K J, Aber J D. Assessing the role of fine roots in carbon and nutrient cycling[J]. Trends in Ecology & Evolution, 1993, 8(5): 174-178. |
| [7] | Curt T, Prévosto B, Klesczewski M, et al. Post-grazing Scots pine colonization of mid-elevation heathlands: Population structure, impact on vegetation composition and diversity[J]. Annals of Forest Science, 2003, 60(7): 711-724. |
| [8] | Meinen C, Hertel D, Leuschner C. Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: Is there evidence of below-ground overyielding[J]. Oecologia, 2009, 161(1): 99-111. |
| [9] | 卫星, 王政权, 张国珍, 等. 水曲柳苗木不同根序对干旱胁迫的生理生化反应[J]. 林业科学, 2009, 45(6): 16-21. |
| [Wei Xing, Wang Zhengquan, Zhang Guozhen, et al. Physiological and biochemical responses of different order roots in Fraxinus mandshurica seedlings to drought stress[J]. Scientia Silvae Sinicae, 2009, 45(6): 16-21.] | |
| [10] | Li W R, Zhang S Q, Ding S Y, et al. Root morphological variation and water use in alfalfa under drought stress[J]. Acta Ecologica Sinica, 2010, 30(19): 5140-5150. |
| [11] | Ahmed C B, Rouina B B, Sensoy S, et al. Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes[J]. Environmental and Experimental Botany, 2009, 67(2): 345-352. |
| [12] | Di Iorio A, Montagnoli A, Scippa G S, et al. Fine root growth of Quercus pubescens seedlings after drought stress and fire disturbance[J]. Environmental and Experimental Botany, 2011, 74: 272-279. |
| [13] | 吴敏, 张文辉, 周建云, 等. 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响[J]. 生态学报, 2014, 34(15): 4223-4233. |
| [Wu Min, Zhang Wenhui, Zhou Jianyun, et al. Effects of drought stress on growth, physiological and biochemical parameters in fine roots of Quercus variabilis Bl. seedlings[J]. Acta Ecologica Sinica, 2014, 34(15): 4223-4233.] | |
| [14] | 张川红, 沈应柏, 尹伟伦, 等. 盐胁迫对几种苗木生长及光合作用的影响[J]. 林业科学, 2002, 48(2): 27-31. |
| [Zhang Chuanhong, Shen Yingbai, Yin Weilun, et al. Effect of salt stress on photosynthesis and growth of four tree species seedlings[J]. Scientia Silvae Sinicae, 2002, 48(2): 27-31.] | |
| [15] | Amor N B, Jiménez A, Megdiche W, et al. Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima[J]. Physiologia Plantarum, 2006, 126(3): 446-457. |
| [16] | 柯玉琴, 潘廷国. NaCl 胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J]. 植物生理与分子生物学, 1999, 36(3): 229-233,315-316. |
| [Ke Yuqin, Pan Tingguo. Effects of slat stress on the ultrastructure of chloroplast and the activities of some protective enzyme in leaves of sweet potato[J]. Physiology and Molecular Biology of Plants, 1999, 36(3): 229-233, 315-316.] | |
| [17] |
秦景, 董雯怡, 贺康宁, 等. 盐胁迫对沙棘幼苗生长与光合生理特征的影响[J]. 生态环境学报, 2009, 18(3): 1031-1036.
doi: 10.16258/j.cnki.1674-5906(2009)03-1031-06 |
| [Qin Jing, Dong Wenyi, He Kangning, et al. Effects of salt stress on growth and photosynthetic physiological features of Hippophae rhamnoides seedlings[J]. Ecology and Environmental Sciences, 2009, 18(3): 1031-1036.] | |
| [18] | 樊怀福, 李娟, 郭世荣, 等. 外源 NO 对 NaCl 胁迫下黄瓜幼苗生长和根系谷胱甘肽抗氧化酶系统的影响[J]. 西北植物学报, 2007, 27(8): 1611-1618. |
| [Fan Huaifu, Li Juan, Guo Shirong, et al. Effects of exogenous nitric oxide on growth and glutathione dependent antioxidative system in cucumber seedlings roots under NaCl stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(8): 1611-1618.] | |
| [19] | Debez A, Hamed B K, Grignon C, et al. Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima[J]. Plant and Soil, 2004, 262(1): 179-189. |
| [20] | Bueno M, Lendínez M L, Aparicio C, et al. Germination and growth of Atriplex prostrata and Plantago coronopus: Two strategies to survive in saline habitats[J]. Flora, 2017, 227: 56-63. |
| [21] | Malcolm C V, Lindley V A, O’leary J W, et al. Halophyte and glycophyte salt tolerance at germination and the establishment of halophyte shrubs in saline environments[J]. Plant and Soil, 2003, 253: 171-185. |
| [22] | 王娟娟, 张文辉, 刘新成. NaCl胁迫对3种不同处理四翅滨藜种子萌发的影响[J]. 西北农业学报, 2010, 19(1): 104-111. |
| [Wang Juanjuan, Zhang Wenhui, Liu Xincheng. Effects of seed germination in three different treatments’ Atriplex canescens under NaCl stress[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(1): 104-111.] | |
| [23] | 王娟娟, 张文辉. NaCl和Na2CO3胁迫对四翅滨藜种子萌发及保护酶活性的影响[J]. 林业科学, 2011, 47(2): 154-160. |
| [Wang Juanjuan, Zhang Wenhui. Effects of activities of protective enzymes and seed germination in Atriplex canescens under NaCl and Na2CO3 Stress[J]. Scientia Silvae Sinicae, 2011, 47(2): 154-160.] | |
| [24] | 胡生荣, 张勇, 汪季, 等. 不同预处理对滨藜种子在逆境中萌发的影响[J]. 种子, 2008, 28(4): 1-6. |
| [Hu Shengrong, Zhang Yong, Wang Ji, et al. Influence of different pretreatments on germination in adversity of Atriplex L. seeds[J]. Seed, 2008, 28(4): 1-6.] | |
| [25] | 赵旭珍. 辽西地区四翅滨藜的抗旱适应性研究[D]. 北京: 中国农业科学院, 2012. |
| [Zhao Xuzhen. Study on Drought Resistance of Atriplex canescens in Western Liaoning[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012.] | |
| [26] | Guo H, Cui Y N, Pan Y Q, et al. Sodium chloride facilitates the secretohalophyte Atriplex canescens adaptation to drought stress[J]. Plant Physiology and Biochemistry, 2020, 150: 99-108. |
| [27] | Wang S, Zhou H, He Z, et al. Effects of drought stress on leaf functional traits and biomass characteristics of Atriplex canescens[J]. Plants, 2024, 13(14): 2006. |
| [28] |
马晓东, 朱成刚, 李卫红. 多枝柽柳幼苗根系形态及生物量对不同灌溉处理的响应[J]. 植物生态学报, 2012, 36(10): 1024-1032.
doi: 10.3724/SP.J.1258.2012.01024 |
|
[Ma Xiaodong, Zhu Chenggang, Li Weihong. Response of root morphology and biomass of Tamarix ramosissima seedlings to different water irrigations[J]. Chinese Journal of Plant Ecology, 2012, 36(10): 1024-1032.]
doi: 10.3724/SP.J.1258.2012.01024 |
|
| [29] | 王波, 宋凤斌. 燕麦对盐碱胁迫的反应和适应性[J]. 生态环境, 2006, 15(3): 625-629. |
| [Wang Bo, Song Fengbin. Physiological responses and adaptive capacity of oats to saline-alkali stress[J]. Ecology and Environmental, 2006, 15(3): 625-629.] | |
| [30] | 苑泽宁, 石福臣. 盐胁迫对互花米草种子萌发及胚生长的影响[J]. 云南植物研究, 2008, 30(2): 227-231. |
| [Yuan Zening, Shi Fuchen. Effects of salt stress on seed germination and embryo growth of Spartina alterniflora (gramineae)[J]. Acta Botanica Yunnanica, 2008, 30(2): 227-231.] | |
| [31] | 郭米山, 高广磊, 丁国栋, 等. 聚乙二醇模拟干旱胁迫对国槐种子萌发和幼苗生理特征的影响[J]. 河北农业大学学报, 2018, 41(6): 31-37. |
| [Guo Mishan, Gao Guanglei, Ding Guodong, et al. Effects of drought stress simulated by PEG6000 on seed germination and physiological characteristics of Sophora japonica seedling[J]. Journal of Hebei Agricultural University, 2018, 41(6): 31-37.] | |
| [32] |
王志恒, 杨秀柳, 邹芳, 等. 旱盐交叉胁迫对甜高粱种子萌发和生理特性的影响[J]. 中国农业科技导报, 2021, 23(2): 37-49.
doi: 10.13304/j.nykjdb.2019.0561 |
|
[Wang Zhiheng, Yang Xiuliu, Zou Fang, et al. Effects of salt and drought cross stress on germination and physiological characteristics of sweet sorghum seeds[J]. Journal of Agricultural Science and Technology, 2021, 23(2): 37-49.]
doi: 10.13304/j.nykjdb.2019.0561 |
|
| [33] |
Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103(4): 551-560.
doi: 10.1093/aob/mcn125 pmid: 18662937 |
| [34] |
Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.
doi: 10.1016/j.ecoenv.2004.06.010 pmid: 15590011 |
| [35] |
高荣嵘, 杨莎, 郭峰, 等. 盐旱交叉胁迫对花生生长发育和生理特性的影响[J]. 中国油料作物学报, 2018, 40(2): 218-226.
doi: 10.7505/j.issn.1007-9084.2018.02.007 |
|
[Gao Rongrong, Yang Sha, Guo Feng, et al. Effects of salt and drought cross stress on peanut (Arachis hypogaea) growth and physiological characteristics[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(2): 218-226.]
doi: 10.7505/j.issn.1007-9084.2018.02.007 |
|
| [36] | 王波, 宋凤斌, 张金才. 植物耐盐性研究进展[J]. 农业系统科学与综合研究, 2007, 23(2): 212-216. |
| [Wang Bo, Song Fengbin, Zhang Jincai. Advances in study of salt-stress tolerance in plants[J]. System Sciences and Comprehensive Studies in Agriculture, 2007, 23(2): 212-216.] | |
| [37] | Pierret A, Doussan C, Capowiez Y, et al. Root functional architecture: A framework for modeling the interplay between roots and soil[J]. Vadose Zone Journal, 2007, 6(2): 269-281. |
| [38] | 王振兴, 吕海燕, 秦红艳, 等. 盐碱胁迫对山葡萄光合特性及生长发育的影响[J]. 西北植物学报, 2017, 37(2): 339-345. |
| [Wang Zhenxing, Lü Haiyan, Qin Hongyan, et al. Photosynthetic characteristics and growth development of amur grape (Vitis amurensis Rupr.) under saline-alkali stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(2): 339-345.] | |
| [39] | Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Biology, 1982, 33(1): 317-345. |
| [40] | 房用, 刘德玺, 马昭让. 等. 滨海盐碱地大果沙棘适应及耐盐碱试验[J]. 东北林业大学学报, 2005, 49(2): 38-39. |
| [Fang Yong, Liu Dexi, Ma Zhaorang, et al. Tests on the adaptation and salt and alkali resistance of Hippophae rhamnoides L. in seashore[J]. Journal of Northeast Forestry University, 2005, 49(2): 38-39.] | |
| [41] | 许大全, 高伟, 阮军. 光质对植物生长发育的影响[J]. 植物生理学报, 2015, 51(8): 1217-1234. |
| [Xu Daquan, Gao Wei, Ruan Jun. Effects of light quality on plant growth and development[J]. Plant Physiology Journal, 2015, 51(8): 1217-1234.] |
| [1] | 白事麟, 吕雅雅, 师小军. 不同生境和基质对经过牛消化道的新疆野苹果种子萌发和幼苗生长的影响[J]. 干旱区研究, 2024, 41(5): 821-829. |
| [2] | 杨竹青, 王磊, 张雪, 申建香, 张伊婧, 李欣宇, 张波, 牛金帅. 典型固沙植物种子萌发和幼苗生长对土壤水分的响应[J]. 干旱区研究, 2024, 41(5): 830-842. |
| [3] | 马龙龙, 易志远, 魏采用, 周峰, 李明涛, 乔成龙, 杜灵通. 宁夏盐池县生态系统水分利用效率时空特征及其影响因素[J]. 干旱区研究, 2024, 41(4): 650-660. |
| [4] | 解玉彩, 刘浩, 赵丰年, 张磊, 赵鑫, 师卓, 王兴鹏. 灌溉水矿化度和钠吸附比互作对膜下滴灌棉花生长及产量的影响[J]. 干旱区研究, 2024, 41(12): 2071-2082. |
| [5] | 张玲雪, 李小锋, 屈军, 马美瑜, 张建斌, 李耀明. 水盐胁迫对四翅滨藜生理生长特性的影响[J]. 干旱区研究, 2024, 41(10): 1767-1777. |
| [6] | 钱玥,李思源,饶良懿. 盐碱胁迫对菊芋渗透调节及抗氧化酶系统的影响[J]. 干旱区研究, 2023, 40(9): 1465-1471. |
| [7] | 李娟霞, 白小明, 张翠, 冉福, 李萍, 闫玉邦, 张才忠, 朱雅楠, 陈辉. 不同盐分类型对一年生早熟禾种子萌发和幼苗生长的影响[J]. 干旱区研究, 2023, 40(7): 1131-1140. |
| [8] | 吕锦心, 梁康, 刘昌明, 张仪辉, 刘璐. 无定河流域土地覆被空间分异机制及相关水碳变量变化[J]. 干旱区研究, 2023, 40(4): 563-572. |
| [9] | 胡焕琼, 李利, 于军, 梁海连, 吕瑞恒. 四翅滨藜和多枝柽柳对土壤干旱的响应差异[J]. 干旱区研究, 2023, 40(12): 2007-2015. |
| [10] | 王紫瑄, 解甜甜, 王雅茹, 杨杰艳, 杨秀清. 丛枝菌根真菌(AMF)对蒙古沙冬青幼苗的促生特性及作用机制[J]. 干旱区研究, 2023, 40(1): 78-89. |
| [11] | 张宗芳, 徐将, 师小军. 新疆野苹果幼苗生长及生物量分配对降水量和降水间隔时间的响应[J]. 干旱区研究, 2023, 40(1): 102-110. |
| [12] | 马兴羽,黄彩变,曾凡江,李向义,张玉林,丁雅,高艳菊,徐梦琪. 沙地盐胁迫对油莎豆幼苗生理生长影响的模拟研究[J]. 干旱区研究, 2022, 39(6): 1862-1874. |
| [13] | 丁雅,杨建明,李利,张志浩,曾凡江. 南疆盆地亏缺灌溉和覆膜对油莎豆生物量及产量的影响[J]. 干旱区研究, 2022, 39(3): 883-892. |
| [14] | 祁小平,李广,袁建钰,常海刚. 保护性耕作对陇中旱作麦田蓄水保墒效果和产量的影响[J]. 干旱区研究, 2022, 39(1): 312-321. |
| [15] | 王晶晶,闫海冰,王紫瑄,解甜甜,杨秀清. 断根与IBA处理对沙冬青根系质量及幼苗生长的影响[J]. 干旱区研究, 2022, 39(1): 230-239. |
|
||