干旱区研究 ›› 2024, Vol. 41 ›› Issue (12): 2132-2142.doi: 10.13866/j.azr.2024.12.14 cstr: 32277.14.AZR.20241214
收稿日期:
2024-06-13
修回日期:
2024-09-08
出版日期:
2024-12-15
发布日期:
2024-12-20
通讯作者:
许丽. E-mail: 120050077@taru.edu.cn作者简介:
王洋(1997-),女,硕士,讲师,主要从事生态系统服务评估. E-mail: wyspf85000@163.com
基金资助:
WANG Yang(), FENG Zhuoya, XU Li(), GAO Wenxin
Received:
2024-06-13
Revised:
2024-09-08
Published:
2024-12-15
Online:
2024-12-20
摘要:
了解土地利用变化对生境质量的响应特征及驱动因素可为干旱区生态保护提供科学依据。基于土地利用数据,利用InVEST模型、生境贡献率和地理探测器等方法评估土地利用变化与生境质量响应及其影响因素,并预测2030年的生境质量。结果表明:(1) 土地利用类型以未利用地和草地为主,耕地和建设用地面积分别扩张了10545 km2和1170 km2,林地、草地和未利用地面积收缩;(2) 生境质量整体水平偏低,呈持续下降的趋势,空间分布呈边缘高,中部低的特点,草地流入未利用地则生境质量明显降低,反之生境质量则显著提高;(3) 生境质量空间分布主要受高程、温度和降水的影响,且高程与降水的交互作用对流域生境质量解释力最强;(4) 2030年,生态保护情景相较于自然发展情景和经济发展情景优势显著,生境质量有所提高。未来生态保护主要从防治沙漠扩张、保护草地和水资源入手。
王洋, 冯卓亚, 许丽, 高文信. 塔里木河流域生境质量与土地利用变化响应及驱动力[J]. 干旱区研究, 2024, 41(12): 2132-2142.
WANG Yang, FENG Zhuoya, XU Li, GAO Wenxin. Response and influencing factors of habitat quality and land use change in the Tarim River Basin[J]. Arid Zone Research, 2024, 41(12): 2132-2142.
表1
数据来源"
数据名称 | 数据来源 | 分辨率 | 预处理 |
---|---|---|---|
土地利用数据 | 中国科学院资源与环境数据中心 ( | 1 km | 经重分类后分为耕地、草地、林地、水域、建设用地、未利用地和沼泽 |
社会经济数据 | 中国科学院资源与环境数据中心 ( | 1 km | 包括GDP和人口密度数据 |
月平均降水量数据 | 国家青藏高原科学数据中心 ( | 1 km | 求和后得到2000年、2010年和2020年年平均降水量 |
月平均温度数据 | 国家青藏高原科学数据中心 ( | 1 km | 求均值得到2000年、2010年和2020年年平均温度 |
DEM数据 | 地理空间数据云( | 90 m | 剪裁得到研究区DEM数据 |
坡度数据 | - | 1 km | 利用ArcGIS坡度工具计算得到 |
区位数据 | 国家基础地理信息中心( | 1 km | 包括距主要公路距离和距主要河流距离数据,利用欧氏距离计算得到 |
表4
塔里木河流域土地利用转移矩阵"
时期 | LUCC | 耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 | 沼泽 |
---|---|---|---|---|---|---|---|---|
2000—2010年 | 耕地 | 29169 | 397 | 1170 | 143 | 479 | 405 | 15 |
林地 | 873 | 10676 | 1322 | 105 | 14 | 441 | 18 | |
草地 | 4072 | 1240 | 264549 | 1361 | 75 | 5985 | 216 | |
水域 | 246 | 102 | 1566 | 23229 | 58 | 1857 | 114 | |
建设用地 | 419 | 15 | 18 | 6 | 1453 | 32 | 0 | |
未利用地 | 1087 | 435 | 6162 | 1914 | 172 | 665831 | 90 | |
沼泽 | 86 | 72 | 291 | 242 | 0 | 61 | 2685 | |
2010—2020年 | 耕地 | 35636 | 1 | 120 | 6 | 182 | 7 | 0 |
林地 | 261 | 12649 | 1 | 12 | 13 | 0 | 1 | |
草地 | 4893 | 0 | 269613 | 378 | 138 | 8 | 50 | |
水域 | 23 | 1 | 148 | 26664 | 1 | 3 | 160 | |
建设用地 | 1 | 0 | 0 | 0 | 2550 | 0 | 0 | |
未利用地 | 1486 | 63 | 28 | 380 | 529 | 671933 | 193 | |
沼泽 | 23 | 0 | 81 | 105 | 0 | 0 | 2929 | |
2000—2020年 | 耕地 | 29372 | 377 | 885 | 144 | 654 | 333 | 13 |
林地 | 1135 | 10451 | 1281 | 113 | 23 | 428 | 18 | |
草地 | 8471 | 1212 | 259757 | 1680 | 215 | 5927 | 236 | |
水域 | 281 | 98 | 1608 | 23026 | 70 | 1825 | 264 | |
建设用地 | 416 | 15 | 12 | 6 | 1471 | 23 | 0 | |
未利用地 | 2533 | 489 | 6104 | 2261 | 680 | 663355 | 269 | |
沼泽 | 115 | 72 | 342 | 315 | 0 | 60 | 2533 |
表6
交互作用探测结果"
影响因素 | 高程 | 坡度 | 降水 | 温度 | 人口密度 | GDP | 距主要公路距离 | 距主要河流距离 |
---|---|---|---|---|---|---|---|---|
高程 | 0.1644 | |||||||
坡度 | 0.1870 | 0.0982 | ||||||
降水 | 0.2245 | 0.1810 | 0.1090 | |||||
温度 | 0.2050 | 0.1939 | 0.2253 | 0.1626 | ||||
人口密度 | 0.1877 | 0.1143 | 0.1196 | 0.1858 | 0.0061 | |||
GDP | 0.1759 | 0.1057 | 0.1122 | 0.1734 | 0.0083 | 0.0040 | ||
距主要公路距离 | 0.2002 | 0.1121 | 0.1569 | 0.2039 | 0.0201 | 0.0196 | 0.0156 | |
距主要河流距离 | 0.1825 | 0.1067 | 0.1270 | 0.1947 | 0.0205 | 0.0164 | 0.0416 | 0.0114 |
[1] | 袁文华, 范文君, 李建春, 等. 黄河流域典型县域生境质量的时空分异特征及影响因素研究[J]. 生态与农村环境学报, 2024, 40(5): 622-633. |
[Yuan Wenhua, Fan Wenjun, Li Jianchun, et al. Research on the spatiotemporal differentiation characteristics and influencing factors of ecological quality in typical counties in the Yellow River Basin[J]. Journal of Ecology and Rural Environment, 2024, 40(5): 622-633. ] | |
[2] | 智菲, 周振宏, 赵铭, 等. 基于InVEST和Geodetector模型的合肥生境质量时空演变及影响因素分析[J]. 河北环境工程学院学报, 2024, 34(3): 49-54. |
[Zhi Fei, Zhou Zhenhong, Zhao Ming, et al. Temporal and spatial evolution of habitat quality and influencing factors in Hefei city based on InVEST and Geodetector model[J]. Journal of Hebei University of Environmental Engineering, 2024, 34(3): 49-54. ] | |
[3] |
Dai Limin, Li Shanlin, Lewis Bernard J, et al. The influence of land use change on the spatial-temporal variability of habitat quality between 1990 and 2010 in Northeast China[J]. Journal of Forestry Research, 2019, 30(6): 2227-2236.
doi: 10.1007/s11676-018-0771-x |
[4] |
Xie B, Zhang M M. Spatio-temporal evolution and driving forces of habitat quality in Guizhou Province[J]. Scientific Reports, 2023, 13(1): 6908.
doi: 10.1038/s41598-023-33903-8 pmid: 37106006 |
[5] | 王佩, 李英杰, 袁家根, 等. 基于优化MaxEnt模型的原麝生境适宜性评价[J]. 野生动物学报, 2023, 44(1): 38-45. |
[Wang Pei, Li Yingjie, Yuan Jiagen, et al. Habitat suitability assessment for Moschus moschiferus based on optimized MaxEnt model[J]. Chinese Journal of Wildlife, 2023, 44(1): 38-45. ] | |
[6] | Zhu Y. Social value evaluation of ecosystem services in global geoparks based on SolVES model[J]. Mathematical Problems in Engineering, 2022, 2022(1): 9748880. |
[7] | Liu Y X, Wang Y T, Lin Y W, et al. Habitat quality assessment and driving factors analysis of Guangdong Province, China[J]. Sustainability, 2023, 15(15): 11615. |
[8] |
张丹华, 王洋, 幺宁. 辽中南城市群城市化及生态效应[J]. 应用生态学报, 2022, 33(9): 2521-2529.
doi: 10.13287/j.1001-9332.202209.025 |
[Zhang Danhua, Wang Yang, Yao Ning. Urbanization and ecological effect in mid-southern Liaoning urban agglomeration, China[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2521-2529. ]
doi: 10.13287/j.1001-9332.202209.025 |
|
[9] | Li T, Bao R, Li L, et al. Temporal and spatial changes of habitat quality and their potential driving factors in Southwest China[J]. Land, 2023, 12(2): 346. |
[10] | Bi M Y, Zhong Y X, Xiao Z P, et al. Spatial and temporal change of habitat quality of Poyang Lake Basin in China at Small Watershed[J]. Chinese Geographical Science, 2023, 33(3): 565-582. |
[11] | 张大智, 孙小银, 袁兴中, 等. 南四湖流域1980—2015年土地利用变化及其对流域生境质量的影响[J]. 湖泊科学, 2018, 30(2): 349-357. |
[Zhang Dazhi, Sun Xiaoyin, Yuan Xingzhong, et al. Land use change and its impact on habitat quality in Lake Nansi Basin from 1980 to 2015[J]. Journal of Lake Sciences, 2018, 30(2): 349-357. ] | |
[12] | 赵庆建, 吴晓珍. 基于InVEST模型的岷江流域土地利用变化对生境质量的影响研究[J]. 生态科学, 2022, 41(6): 1-10. |
[Zhao Qingjian, Wu Xiaozhen. Research on the impact of land use change on habitat quality in Minjiang River Basin based on InVEST model[J]. Ecological Science, 2022, 41(6): 1-10. ] | |
[13] | 魏文飞, 包玉, 王志泰, 等. 喀斯特多山城市生境质量对土地利用变化的时空响应——以贵阳市为例[J]. 生态学报, 2023, 43(10): 3920-3935. |
[Wei Wenfei, Bao Yu, Wang Zhitai, et al. Spatio-temporal responses of urban environment quality to land use change in mountainous cities of Karst areas[J]. Acta Ecologica Sinica, 2023, 43(10): 3920-3935. ] | |
[14] | 韩宇, 毛逸飞, 杨伶, 等. 洞庭湖流域生境质量对LUCC的动态响应[J]. 中南林业科技大学学报, 2023, 43(6): 148-157. |
[Han Yu, Mao Yifei, Yang Ling, et al. Dynamic responses of habitat quality to LUCC in the Dongting Lake Basin[J]. Journal of Central South University of Forestry & Technology, 2023, 43(6): 148-157. ] | |
[15] | 赵依谷, 黄伟, 费秀超, 等. 基于MGWR模型的天目-怀玉山区生境质量对土地利用变化的响应[J]. 安徽农业大学学报, 2023, 50(3): 502-510. |
[Zhao Yigu, Huang Wei, Fei Xiuchao, et al. Responses of habitat quality to land use change in Tianmu-Huaiyu Mountains based on the MGWR model[J]. Journal of Anhui Agricultural University, 2023, 50(3): 502-510. ] | |
[16] |
杨荣钦, 肖玉磊, 池苗苗, 等. 近20 a塔里木河流域人类活动及景观生态风险时空变化[J]. 干旱区研究, 2024, 41(6): 1010-1020.
doi: 10.13866/j.azr.2024.06.10 |
[Yang Rongqin, Xiao Yulei, Chi Miaomiao, et al. Temporal and spatial variations of human activities and landscape ecological risks in the Tarim River Basin, China, during the last 20 years[J]. Arid Zone Research, 2024, 41(6): 1010-1020. ]
doi: 10.13866/j.azr.2024.06.10 |
|
[17] | 王璐晨, 韩海辉, 张俊, 等. 塔里木河流域土地利用及人类活动强度的时空演化特征研究[J]. 中国地质, 2024, 51(1): 203-220. |
[Wang Luchen, Han Haihui, Zhang Jun, et al. Spatio-temporal evolution of land use and human activity intensity in the Tarim River Basin, Xinjiang[J]. Geology in China, 2024, 51(1): 203-220. ] | |
[18] | 刘雨曈. 塔里木河流域水土流失动态变化分析[J]. 水生态学杂志, 2022, 43(3): 105-112. |
[Liu Yutong. Soil alteration and water loss in the Tarim River Basin[J]. Journal of Hydroecology, 2022, 43(3): 105-112. ] | |
[19] | 常雪儿, 汪洋, 甄慧, 等. 1990—2018年新疆喀什噶尔河流域土地利用/覆被变化空间耦合及其生态效应[J]. 西南农业学报, 2022, 35(3): 596-607. |
[Chang Xue’er, Wang Yang, Zhen Hui, et al. Spatial couple of land use/cover changes and its consequence for ecological systems in Kaxgar River Basin in Xinjiang from 1990 to 2018[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(3): 596-607. ] | |
[20] | 冉启云. 塔里木河流域地表水体时空变化特征探究及分析[D]. 重庆: 重庆交通大学, 2017. |
[Ran Qiyun. Spatio-temporal Change Characteristics and Analysis of Surface Water Resources in the Tarim River Basin[D]. Chongqing: Chongqing Jiaotong University, 2017. ] | |
[21] | 阿里木·阿布都克然木. 人类活动影响下塔里木河流域土地利用变化与驱动力分析[J]. 水利技术监督, 2024(6): 116-120. |
[Alimu Abudukranmu. Analysis of land use changes and driving forces in the Tarim River Basin under the influence of human activities[J]. Technical Supervision in Water Resources, 2024(6): 116-120. ] | |
[22] | 克帕也木·尔肯. 基于水资源供给条件的塔里木河流域耕地规模分析[J]. 水利技术监督, 2023(10): 129-132. |
[Kepayemu Erken. Analysis and suggestions on the scale of cultivated land in the Tarim River Basin based on water resource supply conditions[J]. Technical Supervision in Water Resources, 2023(10): 129-132. ] | |
[23] | Cheng P, Min M, Zhao W, et al. Spatial difference pattern of habitat quality and mechanism of factors influencing in resource-based cities: a case study of Tangshan City, China[J]. Journal of Resources and Ecology, 2021, 12(5): 636-649. |
[24] | 师君银, 马勇刚, 许仲林. 喀什地区土地利用变化对生境质量的影响[J]. 西南农业学报, 2023, 36(11): 2480-2490. |
[Shi Junyin, Ma Yonggang, Xu Zhonglin. Impact of land use changes on habitat quality in Kashgar Region[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(11): 2480-2490. ] | |
[25] | 王晓琴, 王宏卫, 谈波, 等. 新疆阿克苏地区景观格局与生境质量时空演变及影响机制[J]. 华侨大学学报(自然科学版), 2022, 43(6): 777-789. |
[Wang Xiaoqin, Wang Hongwei, Tan Bo, et al. Spatial-temporal evolution and influence mechanism of landscape pattern and habitat quality in Aksu Region of Xinjiang[J]. Journal of Huaqiao University(Natural Science), 2022, 43(6): 777-789. ] | |
[26] |
李文秀, 燕振刚. 基于地理探测器的甘肃农牧交错带土地利用时空演化及其驱动机制[J]. 干旱区研究, 2024, 41(4): 590-602.
doi: 10.13866/j.azr.2024.04.06 |
[Li Wenxiu, Yan Zhengang. Analysis of spatiotemporal evolution of land use and its driving mechanism in the agropastoral ecotone of Gansu Province using Geodetector[J]. Arid Zone Research, 2024, 41(4): 590-602. ]
doi: 10.13866/j.azr.2024.04.06 |
|
[27] |
李鑫磊, 李瑞平, 王秀青, 等. 基于地理探测器的河套灌区林草植被覆盖度时空变化与驱动力分析[J]. 干旱区研究, 2023, 40(4): 623-635.
doi: 10.13866/j.azr.2023.04.11 |
[Li Xinlei, Li Ruiping, Wang Xiuqing, et al. Spatiotemporal change and analysis of factors driving forest-grass vegetation coverage in Hetao Irrigation District based on geographical detector[J]. Arid Zone Research, 2023, 40(4): 623-635. ]
doi: 10.13866/j.azr.2023.04.11 |
|
[28] | 孙晓雨, 杨金明, 张家豪, 等. 五台山风景名胜区土地利用变化及其对生境质量的影响[J]. 自然保护地, 2024, 4(2): 124-140. |
[Sun Xiaoyu, Yang Jinming, Zhang Jiahao, et al. Impact of land use change on habitat quality in Mount Wutai Scenic Area[J]. Natural Protected Areas, 2024, 4(2): 124-140. ] | |
[29] |
张小瑜, 周自翔, 唐志雄, 等. 无定河流域生境质量时空变化及预测[J]. 中国沙漠, 2024, 44(3): 75-84.
doi: 10.7522/j.issn.1000-694X.2023.00168 |
[Zhang Xiaoyu, Zhou Zixiang, Tang Zhixiong, et al. Spatio-temporal variation and prediction of habitat quality in Wuding River Basin[J]. Journal of Desert Research, 2024, 44(3): 75-84. ]
doi: 10.7522/j.issn.1000-694X.2023.00168 |
|
[30] |
付玮, 夏文浩, 樊童生, 等. 塔里木河流域生态系统碳储量的情景预测分析[J]. 干旱区地理, 2024, 47(4): 634-647.
doi: 10.12118/j.issn.1000-6060.2023.274 |
[Fu Wei, Xia Wenhao, Fan Tongsheng, et al. Scenario projection analysis of ecosystem carbon stocks in the Tarim River Basin[J]. Arid Land Geography, 2024, 47(4): 634-647. ]
doi: 10.12118/j.issn.1000-6060.2023.274 |
|
[31] | 杨顺法, 昝梅, 袁瑞联, 等. 基于 PLUS与 InVEST模型的新疆碳储量变化及预测[J/OL]. 环境科学. https://doi.org/10.13227/j.hjkx.202312272, 2024-06-12. |
[Yang Shunfa, Zan Mei, Yuan Ruilian, et al. Carbon stock changes and forecasting in Xinjiang based on PLUS and InVEST model approach[J/OL]. Environmental Science. https://doi.org/10.13227/j.hjkx.202312272, 2024-06-12. ] | |
[32] | 糜毅, 李涛, 吴博, 等. 基于优化模拟的长株潭3+5城市群碳储量时空演变与预测[J]. 环境工程技术学报, 2023, 13(5): 1740-1751. |
[Mi Yi, Li Tao, Wu Bo, et al. Spatio-temporal evolution and prediction of carbon storage in Chang-Zhu-Tan 3+5 urban agglomeration based on optimization simulation[J]. Journal of Environmental Engineering Technology, 2023, 13(5): 1740-1751. ] | |
[33] | 徐梦菲, 孙一帆, 汪霞. 郑州市土地利用/覆被变化与生境质量的时空演变及情景预测[J]. 水土保持通报, 2024, 44(2): 364-377. |
[Xu Mengfei, Sun Yifan, Wang Xia. Spatiotemporal evolution and scenario prediction of land-use/land-cover changes and habitat quality in Zhengzhou City[J]. Bulletin of Soil and Water Conservation, 2024, 44(2): 364-377. ] | |
[34] |
Zhang X, Zhou J, Li G, et al. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 to 2010[J]. Journal of Geographical Sciences, 2020, 30: 601-620.
doi: 10.1007/s11442-020-1745-4 |
[35] | 王彤, 易桂花, 张廷斌, 等. 西南三江流域生境质量时空格局及其地形梯度效应[J]. 水土保持研究, 2023, 30(5): 306-314. |
[Wang Tong, Yi Guihua, Zhang Tingbin, et al. Spatial and temporal pattern of habitat quality and its topographic gradient effect in the Three-River Basin of Southwest China[J]. Research of Soil and Water Conservation, 2023, 30(5): 306-314. ] | |
[36] | 王梓洋, 石培基, 李雪红, 等. 河西走廊地区生境质量对土地利用变化的响应机制及提升路径[J/OL]. 环境科学. https://doi.org/10.13227/j.hjkx.202312250, 2024-08-11. |
[Wang Ziyang, Shi Peiji, Li Xuehong, et al. Response mechanism and promotion path of habitat quality to land use change in Hexi Corridor Area[J/OL]. Environmental Science. https://doi.org/10.13227/j.hjkx.202312250, 2024-08-11. ] | |
[37] |
吝静, 赵成义, 马晓飞, 等. 基于生态系统服务价值的塔里木河干流土地利用结构优化[J]. 干旱区研究, 2021, 38(4): 1140-1151.
doi: 10.13866/j.azr.2021.04.26 |
[Lin Jing, Zhao Chengyi, Ma Xiaofei, et al. Optimization of land use structure based on ecosystem service value in the mainstream of Tarim River[J]. Arid Zone Research, 2021, 38(4): 1140-1151. ]
doi: 10.13866/j.azr.2021.04.26 |
|
[38] | 杨昕馨, 赵少军. 新疆塔里木河流域生态文明建设对策建议[J]. 地下水, 2023, 45(3): 251-253. |
[Yang Xinxin, Zhao Shaojun. Suggestions for the construction of ecological civilization in the Tarim River Basin of Xinjiang[J]. Ground Water, 2023, 45(3): 251-253. ] |
[1] | 李冰洁, 范志韬, 曲芷程, 姚顺予, 宿夏姝, 刘东伟, 王立新. 基于InVEST-PLUS模型的黄河流域内蒙古段生态系统碳储量评价及预测[J]. 干旱区研究, 2024, 41(7): 1217-1227. |
[2] | 张顺鑫, 吴子豪, 闫庆武, 李桂娥, 牟守国. 基于PLUS-InVEST模型的天山北坡生态系统碳储量时空变化与预测[J]. 干旱区研究, 2024, 41(7): 1228-1237. |
[3] | 杨荣钦, 肖玉磊, 池苗苗, 穆振侠. 近20 a塔里木河流域人类活动及景观生态风险时空变化[J]. 干旱区研究, 2024, 41(6): 1010-1020. |
[4] | 侯嘉烨, 李建华, 王佳蓉, 马海涛, 强泽楷, 樊新刚. 基于SA-RSEI模型的盐池县生态质量演变研究[J]. 干旱区研究, 2024, 41(6): 1045-1058. |
[5] | 姚小晨, 高凡, 韩方红, 何兵. 2000—2020年阿克苏河流域土地利用强度变化及其对蒸散发的影响[J]. 干旱区研究, 2024, 41(6): 951-963. |
[6] | 唐可欣, 郭建斌, 何亮, 陈林, 万龙. 中国旱区GPP时空演变特征及影响因素研究[J]. 干旱区研究, 2024, 41(6): 964-973. |
[7] | 程晓瑜, 吕洁华. 塔里木河流域碳储量的气候影响机制及地形分异下的归因[J]. 干旱区研究, 2024, 41(5): 865-875. |
[8] | 李文秀, 燕振刚. 基于地理探测器的甘肃农牧交错带土地利用时空演化及其驱动机制[J]. 干旱区研究, 2024, 41(4): 590-602. |
[9] | 刘如龙, 赵媛媛, 陈国清, 迟文峰, 刘正佳. 内蒙古黄河流域1990—2020年生境质量评估[J]. 干旱区研究, 2024, 41(4): 674-683. |
[10] | 李佳珂, 邵战林. 基于PLUS和InVEST模型的乌鲁木齐市碳储量时空演变与预测[J]. 干旱区研究, 2024, 41(3): 499-508. |
[11] | 程秋连, 刘杰, 杨治纬, 张天意, 王斌. 独库高速阿尔先沟段雪崩空间分布及因子探测[J]. 干旱区研究, 2024, 41(2): 220-229. |
[12] | 许宁, 李治国, 梁雪悦, 周晓莹. 基于地形梯度的青藏高原冰川分布格局及成因[J]. 干旱区研究, 2024, 41(2): 230-239. |
[13] | 严莉, 曹广超, 康利刚, 刘梦琳, 叶得力. 基于InVEST模型的共和县生境质量时空变化及驱动因素[J]. 干旱区研究, 2024, 41(2): 314-325. |
[14] | 王思楠, 吴英杰, 王宏宙, 黎明扬, 王飞, 张雯颖, 马小茗, 于向前. 基于地理探测器的鄂尔多斯干旱时空变化驱动因素分析[J]. 干旱区研究, 2024, 41(12): 1981-1991. |
[15] | 王成武, 尧良杰, 汪宙峰, 张荞, 谢亮. 2000—2020年三江源地区景观生态风险评价及驱动因素[J]. 干旱区研究, 2024, 41(11): 1908-1920. |
|