[1] |
高洁, 赵勇, 姚俊强, 等. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384.
|
|
[Gao Jie, Zhao Yong, Yao Junqiang, et al. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change[J]. Arid Zone Research, 2022, 39(5): 1371-1384. ]
|
[2] |
Kartal S, Iban M C, Sekertekin A. Next-level vegetation health index forecasting: A ConvLSTM study using MODIS Time Series[J]. Environmental Science and Pollution Research, 2024, 31: 18932-18948.
|
[3] |
张强, 李栋梁, 姚玉璧, 等. 干旱形成机制与预测理论方法及其灾害风险特征研究进展与展望[J]. 气象学报, 2024, 82(1): 1-21.
|
|
[Zhang Qiang, Li Dongliang, Yao Yubi, et al. Progress and prospect of the research on drought formation, prediction, and related risk assessment[J]. Acta Meteorologica Sinica, 2024, 82(1): 1-21. ]
|
[4] |
Kapari M, Sibanda M, Magidi J, et al. Comparing machine learning algorithms for estimating the maize Crop Water Stress Index (CWSI) using UAV-acquired remotely sensed data in Smallholder Croplands[J]. Drones, 2024, 8(2): 61.
|
[5] |
张强, 姚玉璧, 李耀辉, 等. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 2020, 78(3): 500-521.
|
|
[Zhang Qiang, Yao Yubi, Li Yaohui, et al. Progress and prospect on the study of causes and variation regularity of droughts in China[J]. Acta Meteorologica Sinica, 2020, 78(3): 500-521. ]
|
[6] |
Wu Y, Jiang J, Zhang X, et al. Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice[J]. Agricultural Water Management, 2023, 289: 108521.
|
[7] |
杨雅青, 张翀, 张婕, 等. 关中地区土壤干湿变化及对气候的响应[J]. 干旱区研究, 2024, 41(2): 261-271.
|
|
[Yang Yaqing, Zhang Chong, Zhang Jie, et al. Changes in soil moisture and dryness and their response to climate change in the Guanzhong region[J]. Arid Zone Research, 2024, 41(2): 261-271. ]
|
[8] |
吴天晓, 李宝富, 郭浩, 等. 基于优选遥感干旱指数的华北平原干旱时空变化特征分析[J]. 生态学报, 2023, 43(4): 1621-1634.
|
|
[Wu Tianxiao, Li Baofu, Guo Hao, et al. Analysis of drought variation characteristics in North China Plain based on optimized remote sensing drought index[J]. Acta Ecologica Sinica, 2023, 43(4): 1621-1634. ]
|
[9] |
Dobri R V, Sfîcă L, Amihăesei V A, et al. Drought extent and severity on arable lands in Romania derived from normalized difference drought index (2001-2020)[J]. Remote Sensing, 2021, 13(8): 1478.
|
[10] |
高晓瑜, 汤鹏程, 张莎, 等. 内蒙古各气候区主要作物生长季干旱特征及其与响应因子回归模型[J]. 干旱区研究, 2022, 39(5): 1410-1427.
|
|
[Gao Xiaoyu, Tang Pengcheng, Zhang Sha, et al. Drought characteristics and regression models of drought characteristics and response factors of various climatic areas in Inner Mongolia during main crop growing season[J]. Arid Zone Research, 2022, 39(5): 1410-1427. ]
|
[11] |
童德明, 白雲, 张莎, 等. 干旱严重程度指数(DSI)在山东省干旱遥感监测中的适用性[J]. 中国农业气象, 2020, 41(2): 102-112.
|
|
[Tong Deming, Bai Yun, Zhang Sha, et al. Applicability of Drought Severity Index(DSI) in remote sensing monitoring of drought in Shandong Province[J]. Chinese Journal of Agrometeorology, 2020, 41(2): 102-112. ]
|
[12] |
王鹏新, 陈弛, 张树誉, 等. 基于LAI和VTCI及Copula函数的冬小麦单产估测[J]. 农业机械学报, 2021, 52(10): 255-263.
|
|
[Wang Pengxin, Chen Chi, Zhang Shuyu, et al. Winter wheat yield estimation based on Copula function and remotely sensed LAI and VTCI[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 255-263. ]
|
[13] |
Liu Q, Zhang S, Zhang H, et al. Monitoring drought using composite drought indices based on remote sensing[J]. Science of the Total Environment, 2020, 711: 134585.
|
[14] |
周义, 索文姣. 基于CWSI的汾河流域干旱时空变化特征[J]. 干旱区研究, 2024, 41(2): 191-199.
|
|
[Zhou Yi, Suo Wenjiao. Spatiotemporal variation characteristics of drought in the Fenhe River Basin based on CWSI[J]. Arid Zone Research, 2024, 41(2): 191-199. ]
|
[15] |
曲学斌, 王彦平, 张煦明, 等. 干旱严重指数(DSI)在内蒙古地区的适用性分析[J]. 气象科技, 2021, 49(4): 612-620.
|
|
[Qu Xuebin, Wang Yanping, Zhang Xuming, et al. Applicability analysis of Drought Severity Index (DSI) in Inner Mongolia[J]. Meteorological Science and Technology, 2021, 49(4): 612-620. ]
|
[16] |
程梦园, 曹广超, 赵美亮, 等. 香日德-柴达木河流域土壤湿度时空变化特征及其影响因素[J]. 干旱区研究, 2022, 39(2): 615-624.
|
|
[Cheng Mengyuan, Cao Guangchao, Zhao Meiliang, et al. Temporal and spatial variation characteristics and influencial factors of soil moisture in the Xiangride-Qaidam RiverBasin[J]. Arid Zone Research, 2022, 39(2): 615-624. ]
|
[17] |
汤诗怡, 张翔, 陈能成. 干旱指数的土壤湿度监测适应性分析[J]. 测绘科学, 2021, 46(11): 114-119.
|
|
[Tang Shiyi, Zhang Xiang, Chen Nengcheng. Adaptability analysis of drought index in soil moisture monitoring[J]. Science of Surveying and Mapping, 2021, 46(11): 114-119. ]
|
[18] |
Chen Guojian, Fang Ning, Li Jianfeng, et al. Spatiotemporal variation and drivers of drought based on TVDI in the lower reaches of the Jinsha River[J]. Journal of Resources and Ecology, 2024, 15(1): 44-54.
|
[19] |
Um M J, Kim Y, Park D. Evaluation and modification of the drought severity index (DSI) in East Asia[J]. Remote Sensing of Environment, 2018, 209: 66-76.
|
[20] |
Zhang J, Mu Q, Huang J. Assessing the remotely sensed Drought Severity Index for agricultural drought monitoring and impact analysis in North China[J]. Ecological Indicators, 2016, 63: 296-309.
|
[21] |
Gang C, Wang Z, Chen Y, et al. Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011[J]. Ecological Indicators, 2016, 67: 788-797.
|
[22] |
Khan R, Gilani H. Global drought monitoring with drought severity index (DSI) using Google Earth Engine[J]. Theoretical and Applied Climatology, 2021, 146(1): 411-427.
|
[23] |
Wang L, Kotani A, Tanaka T, et al. Assessment of drought condition using remotely sensed drought severity index and its correlations with soil moisture product in Inner Mongolia[J]. Theoretical and Applied Climatology, 2020, 141(1): 715-728.
|
[24] |
刘珺, 梁韶卿, 李彦荣, 等. 多光谱干旱严重度指数的评价与修正[J]. 光谱学与光谱分析, 2020, 40(11): 3522-3529.
|
|
[Liu Jun, Liang Shaoqing, Li Yanrong, et al. Evaluation and modifying of Multispectral Drought Severity Index[J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 3522-3529. ]
|
[25] |
Mu Q, Zhao M, Kimball J S, et al. A remotely sensed global terrestrial Drought Severity Index[J]. Bulletin of the American Meteorological Society, 2013, 94(1): 83-98.
|
[26] |
Kafy A A, Bakshi A, Saha M, et al. Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms[J]. Science of the Total Environment, 2023, 867: 161394.
|
[27] |
李鑫磊, 李瑞平, 王秀青, 等. 基于地理探测器的河套灌区林草植被覆盖度时空变化与驱动力分析[J]. 干旱区研究, 2023, 40(4): 623-635.
|
|
[Li Xinlei, Li Ruiping, Wang Xiuqing, et al. Spatiotemporal change and analysis of factors driving forest-grass vegetation coverage in Hetao Irrigation District based on geographical detector[J]. Arid Zone Research, 2023, 40(4): 623-635. ]
|
[28] |
王椰, 史海静, 姜艳敏, 等. 基于TVDI的黄土高原干旱时空变化与其影响因素[J]. 农业机械学报, 2023, 54(7): 184-195.
|
|
[Wang Ye, Shi Haijing, Jiang Yanmin, et al. Spatio-temporal variation of drought characteristics and its influencing factors in Loess Plateau based on TVDI[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 184-195. ]
|
[29] |
马梓策, 孙鹏, 张强, 等. 基于MODIS数据的华北地区遥感干旱监测研究[J]. 地理科学, 2022, 42(1): 152-162.
|
|
[Ma Zice, Sun Peng, Zhang Qiang, et al. Remote sensing drought monitoring of North China based on MODIS data[J]. Scientia Geographica Sinica, 2022, 42(1): 152-162. ]
|
[30] |
汪士为. 近20年内蒙古干旱时空动态及其对气候、蒸散发变化的响应[J]. 水土保持研究, 2022, 29(4): 231-239.
|
|
[Wang Shiwei. Spatial and temporal dynamics of drought in Inner Mongolia in recent 20 years and its response to seasonal climate and evapotranspiration[J]. Research of Soil and Water Conservation, 2022, 29(4): 231-239. ]
|
[31] |
袁沭, 邢秀丽, 居为民. 中国遥感干旱指数时空特征及其对气候和地表覆盖变化的响应[J]. 生态学报, 2023, 43(16): 6691-6705.
|
|
[Yuan Shu, Xing Xiuli, Ju Weiming, et al. Temporal and spatial patterns of remote sensing drought indices and their responses to climate and land use changes in China[J]. Acta Ecologica Sinica, 2023, 43(16): 6691-6705. ]
|