干旱区研究 ›› 2024, Vol. 41 ›› Issue (11): 1808-1818.doi: 10.13866/j.azr.2024.11.02 cstr: 32277.14.AZR.20241102

• 天气与气候 • 上一篇    下一篇

近60 a新疆开都-孔雀河流域大气饱和水汽压差变化特征及影响因子

李晓琦1(), 李漠岩1,2(), 李佳卉1, 姚俊强3, 许兴斌1,2   

  1. 1.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830054
    2.新疆干旱区湖泊环境与资源实验室,新疆 乌鲁木齐 830054
    3.中国气象局乌鲁木齐沙漠气象研究所,新疆 乌鲁木齐 830002
  • 收稿日期:2024-06-20 修回日期:2024-08-01 出版日期:2024-11-15 发布日期:2024-11-29
  • 通讯作者: 李漠岩. E-mail: limy525@126.com
  • 作者简介:李晓琦(2002-),男,主要从事干旱区气候与水循环研究. E-mail: 15588528726@163.com
  • 基金资助:
    新疆人才发展基金“天池英才”引进计划青年博士项目;上海合作组织科技伙伴计划及国际科技合作计划项目(2023E01022);上海合作组织科技伙伴计划及国际科技合作计划项目(2023E01005);中国沙漠气象科学研究基金(Sqj2023017)

Changes in atmospheric vapor pressure deficit in the Kaidu-Kongque River Basin and its influencing factors

LI Xiaoqi1(), LI Moyan1,2(), LI Jiahui1, YAO Junqiang3, XU Xingbin1,2   

  1. 1. School of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
    2. Xinjiang Key Laboratory of Lakes Environment and Resources in Arid Zone, Urumqi 830054, Xinjiang, China
    3. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China
  • Received:2024-06-20 Revised:2024-08-01 Published:2024-11-15 Online:2024-11-29

摘要:

基于1961—2021年新疆开都-孔雀河流域逐月气温和相对湿度观测数据,分析开都-孔雀河流域大气饱和水汽压差、饱和水汽压及实际水汽压的变化趋势,探讨山地、绿洲、荒漠环境下大气饱和水汽压差变化特征,揭示了大气饱和水汽压差变化的影响因子。结果表明:(1) 1961—2021年开都-孔雀河流域年及四季大气饱和水汽压差总体呈上升趋势,并呈阶段性变化特征,其中1997年发生突变,从1961—1996年的下降趋势突变为1997—2021年的上升趋势,揭示了1997年以后大气干旱加剧,尤其在春季。(2) 不同环境下大气饱和水汽压差变化趋势与气温和实际水汽压的变化趋势一致,其中荒漠环境下大气饱和水汽压差增长速率最大,其次是绿洲和山地环境。(3) 大气饱和水汽压差与温度变化呈正相关,而与相对湿度变化呈负相关;1997年以来气温快速升高而相对湿度迅速降低是导致大气饱和水汽压差加速上升的主要原因;此外,实际水汽压的增长速率小于饱和水汽压的增长速率。研究成果有助于深入理解大气干旱过程及对气候变化的响应关系。

关键词: 饱和水汽压差(VPD), 实际水汽压, 变化特征, 影响因子, 开都-孔雀河

Abstract:

In this study, we analyzed meteorological observation data from the Kaidu-Kongque River basin in Xinjiang between 1961 and 2021 to investigate trends of vapor pressure deficit (VPD), as well as saturated (es) and actual (ea) water vapor pressure. We explored VPD changes across mountainous, oasis, and desert environments along with the factors influencing these changes. The results revealed the following: (1) Annual and seasonal VPD showed an upward trend from 1961 to 2021, characterized by distinct phases in which a sudden change occurred in 1997, shifting from a downward trend from 1961 to 1996 to an upward trend from 1997 to 2021, highlighting an intensification of atmospheric drought post 1997, particularly in spring. (2) VPD trends align with those of temperature and ea, showing the most significant increase in desert environments, followed by oasis and mountainous environments. (3) VPD changes are primarily affected by ea and es, positively correlated with temperature changes and negatively correlated with Relative Humidity changes. The rapid rise in temperature and decline in RH since 1997 are the primary causes of accelerated VPD, with the growth rate of ea being lower than that of es. These findings enhance our understanding of atmospheric drought and its response to climate change.

Key words: VPD, actual water vapor pressure, variation characteristics, influencing factors, Kaidu-Kongque River