干旱区研究 ›› 2024, Vol. 41 ›› Issue (4): 550-565.doi: 10.13866/j.azr.2024.04.03 cstr: 32277.14.j.azr.2024.04.03
胡广录1,2(), 刘鹏1, 李嘉楠3, 陶虎1, 周成乾1
收稿日期:
2023-11-27
修回日期:
2024-01-18
出版日期:
2024-04-15
发布日期:
2024-04-26
作者简介:
胡广录(1966-),男,教授,博士,研究方向为生态水文及生态修复. E-mail: hgl0814@163.com
基金资助:
HU Guanglu1,2(), LIU Peng1, LI Jia’nan3, TAO Hu1, ZHOU Chengqian1
Received:
2023-11-27
Revised:
2024-01-18
Published:
2024-04-15
Online:
2024-04-26
摘要:
土壤水分对干旱区旱生植物的生长发育必不可少,决定了旱生植物群落的演替动态和方向。探究黑河中游绿洲边缘不同景观类型的土壤水分动态特征,制定切实有效、科学合理的防风固沙措施,对于阻止荒漠化进程显得尤为重要。本文以黑河中游绿洲边缘的防护林、荒漠-绿洲过渡带和荒漠三种景观类型为研究对象,采用HYDRUS-2D模型模拟、LSD分析法、Pearson相关性分析等方法,研究三种不同景观类型土壤水分动态特征及影响因素。结果表明:(1) 土壤体积含水量的RMSE为0.002~0.006 cm3·cm-3,MRE为4.22%~5.20%,R2为0.725~0.967,模拟结果与实测数据具有较高的吻合度,HYDRUS-2D模型可用于本研究区土壤水分动态的模拟研究。(2) 防护林和荒漠-绿洲过渡带景观的土壤体积含水量随土层深度增加呈现出先增大后减小的变化趋势,荒漠景观则呈现出先减小后增大的变化趋势。(3) 有效降水对土壤体积含水量动态变化起决定性作用,9.5 mm以上的降水量可以在短期内显著提高土壤水分含量和入渗深度,荒漠景观降水后的各时段土壤水分入渗深度高于防护林景观和荒漠-绿洲过渡带景观。(4) 三种景观类型的土壤体积含水量与降水、蒸散发、容重、土壤颗粒组成、土壤持水性能等因素有关,且表现出不同程度的显著相关(P<0.01),其中,降水、黏粉粒含量与土壤体积含水量呈显著正相关,容重、砂粒含量与土壤体积含水量呈显著负相关性。因此,研究区栽植防风固沙灌木可以增加土壤黏粉粒含量,提高土壤收集利用雨水的能力,减缓入渗作用的进程,从而对土壤持水性能产生积极影响。
胡广录, 刘鹏, 李嘉楠, 陶虎, 周成乾. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565.
HU Guanglu, LIU Peng, LI Jia’nan, TAO Hu, ZHOU Chengqian. Characteristics of soil moisture dynamics and influencing factors of three landscape types at the oasis edge in the middle reaches of the Heihe River[J]. Arid Zone Research, 2024, 41(4): 550-565.
表1
三种景观类型的土壤容重及颗粒组成"
景观类型 | 土层 深度 /cm | 土壤 容重/ (g·cm-3) | 土壤颗粒含量/% | ||
---|---|---|---|---|---|
黏粒 (≤2 μm) | 粉粒 (2~50 μm) | 砂粒 (≥50 μm) | |||
防护林 | 0~20 | 1.43 | 2.58 | 34.99 | 62.43 |
20~40 | 1.42 | 2.93 | 36.92 | 60.15 | |
40~60 | 1.37 | 3.59 | 46.65 | 49.76 | |
60~80 | 1.31 | 3.69 | 53.79 | 42.52 | |
80~100 | 1.42 | 2.92 | 40.11 | 56.97 | |
荒漠- 绿洲 过渡带 | 0~20 | 1.65 | 0.17 | 3.13 | 96.70 |
20~40 | 1.60 | 0.17 | 3.21 | 96.62 | |
40~60 | 1.60 | 0.17 | 3.51 | 96.32 | |
60~80 | 1.58 | 0.18 | 3.48 | 96.34 | |
80~100 | 1.55 | 0.17 | 3.20 | 96.63 | |
荒漠 | 0~20 | 1.55 | 0.04 | 4.51 | 95.45 |
20~40 | 1.53 | 0.05 | 3.11 | 96.84 | |
40~60 | 1.48 | 0.04 | 4.49 | 95.47 | |
60~80 | 1.48 | 0.04 | 7.73 | 92.23 | |
80~100 | 1.46 | 0.16 | 7.83 | 92.01 |
表2
三种景观类型的土壤水分特征参数"
景观 类型 | 土层 深度 /cm | 残余含 水量θr /(cm3·cm-3) | 饱和含 水量θs /(cm3·cm-3) | 进气 吸力α /cm-1 | 形状 系数 n | 饱和 导水率 Ks/(cm·d-1) |
---|---|---|---|---|---|---|
防护林 | 0~20 | 0.034 | 0.39 | 0.033 | 1.43 | 143.57 |
20~40 | 0.034 | 0.39 | 0.029 | 1.43 | 67.72 | |
40~60 | 0.029 | 0.36 | 0.015 | 1.47 | 58.13 | |
60~80 | 0.028 | 0.35 | 0.009 | 1.55 | 69.44 | |
80~100 | 0.029 | 0.36 | 0.022 | 1.44 | 63.46 | |
荒漠- 绿洲 过渡带 | 0~20 | 0.016 | 0.34 | 0.033 | 3.79 | 427.90 |
20~40 | 0.023 | 0.35 | 0.033 | 3.90 | 446.60 | |
40~60 | 0.024 | 0.35 | 0.033 | 3.84 | 455.60 | |
60~80 | 0.025 | 0.36 | 0.033 | 3.88 | 483.20 | |
80~100 | 0.027 | 0.37 | 0.032 | 3.98 | 569.80 | |
荒漠 | 0~20 | 0.017 | 0.34 | 0.037 | 3.22 | 456.65 |
20~40 | 0.019 | 0.34 | 0.032 | 4.24 | 1182.54 | |
40~60 | 0.020 | 0.37 | 0.034 | 3.75 | 960.86 | |
60~80 | 0.016 | 0.36 | 0.037 | 3.17 | 530.96 | |
80~100 | 0.025 | 0.36 | 0.038 | 3.10 | 530.61 |
表4
防护林景观土壤体积含水量模拟值与其影响因子的相关关系"
体积含水量 | 降水 | 蒸发 | 容重 | 黏粒 | 粉粒 | 砂粒 | 残余含水量 | 饱和含水量 | 饱和导水率 | |
---|---|---|---|---|---|---|---|---|---|---|
体积含水量 | 1 | |||||||||
降水 | 0.168** | 1 | ||||||||
蒸发 | -0.225** | -0.322** | 1 | |||||||
容重 | -0.318** | 0 | 0 | 1 | ||||||
黏粒 | 0.411** | 0 | 0 | -0.916** | 1 | |||||
粉粒 | 0.365** | 0 | 0 | -0.979** | 0.950** | 1 | ||||
砂粒 | -0.369** | 0 | 0 | 0.978** | -0.955** | -1.000** | 1 | |||
残余含水量 | -0.374** | 0 | 0 | 0.722** | -0.785** | -0.843** | 0.842** | 1 | ||
饱和含水量 | -0.373** | 0 | 0 | 0.767** | -0.804** | -0.875** | 0.874** | 0.997** | 1 | |
饱和导水率 | -0.485** | 0 | 0 | 0.412** | -0.664** | -0.528** | 0.538** | 0.627** | 0.609** | 1 |
表5
荒漠-绿洲过渡带景观土壤体积含水量模拟值与其影响因子的相关关系"
体积含水量 | 降水 | 蒸发 | 容重 | 黏粒 | 粉粒 | 砂粒 | 残余含水量 | 饱和含水量 | 饱和导水率 | |
---|---|---|---|---|---|---|---|---|---|---|
体积含水量 | 1 | |||||||||
降水 | 0.245** | 1 | ||||||||
蒸发 | -0.193** | -0.322** | 1 | |||||||
容重 | -0.583** | 0 | 0 | 1 | ||||||
黏粒 | 0.201** | 0 | 0 | -0.245** | 1 | |||||
粉粒 | 0.332** | 0 | 0 | -0.273** | 0.554** | 1 | ||||
砂粒 | -0.333** | 0 | 0 | 0.275** | -0.571** | -1.000** | 1 | |||
残余含水量 | 0.613** | 0 | 0 | -0.967** | 0.267** | 0.463** | -0.463** | 1 | ||
饱和含水量 | 0.534** | 0 | 0 | -0.974** | 0.294** | 0.172** | -0.177** | 0.891** | 1 | |
饱和导水率 | 0.440** | 0 | 0 | -0.888** | 0.066 | -0.040 | 0.038 | 0.756** | 0.950** | 1 |
表6
荒漠景观土壤体积含水量模拟值与其影响因子的相关关系"
体积含水量 | 降水 | 蒸发 | 容重 | 黏粒 | 粉粒 | 砂粒 | 残余含水量 | 饱和含水量 | 饱和导水率 | |
---|---|---|---|---|---|---|---|---|---|---|
体积含水量 | 1 | |||||||||
降水 | 0.249** | 1 | ||||||||
蒸发 | -0.193** | -0.322** | 1 | |||||||
容重 | -0.515** | 0 | 0 | 1 | ||||||
黏粒 | 0.361** | 0 | 0 | -0.045 | 1 | |||||
粉粒 | 0.386** | 0 | 0 | -0.301** | 0.753** | 1 | ||||
砂粒 | -0.388** | 0 | 0 | 0.296** | -0.765** | -1.000** | 1 | |||
残余含水量 | 0.477** | 0 | 0 | -0.562** | 0.418** | 0.037 | -0.048 | 1 | ||
饱和含水量 | 0.500** | 0 | 0 | -0.961** | 0.105** | 0.495** | -0.487** | 0.369** | 1 | |
饱和导水率 | -0.322** | 0 | 0 | 0.148** | -0.782** | -0.987** | 0.988** | 0.039 | -0.352** | 1 |
[1] | 郝丽娜, 粟晓玲. 黑河干流中游地区适宜绿洲及耕地规模确定[J]. 农业工程学报, 2015, 31(10): 262-268. |
[Hao Li’na, Su Xiaoling. Determination for suitable scale of oasis and cultivated land in middle reaches of Heihe River basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 262-268.] | |
[2] | 胡广录, 陶虎, 焦娇, 等. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414-1424. |
[Hu Guanglu, Tao Hu, Jiao Jiao, et al. Runoff trend and attribution analysis of the Zhengyi Gorge in the middle reaches of the Heihe River[J]. Arid Zone Research, 2023, 40(9): 1414-1424.] | |
[3] | 苏永中, 杨晓, 杨荣. 黑河中游边缘荒漠-绿洲非饱和带土壤质地对土壤氮积累与地下水氮污染的影响[J]. 环境科学, 2014, 35(10): 3683-3691. |
[Su Yongzhong, Yang Xiao, Yang Rong. Effect of soil texture in unsaturated zone on soil nitrate accumulation and groundwater nitrate contamination in a marginal oasis in the middle of Heihe River Basin[J]. Environmental Science, 2014, 35(10): 3683-3691.]
doi: 10.1021/es0018825 |
|
[4] |
胡广录, 陈海志, 麻进, 等. 黑河中游荒漠绿洲过渡带典型灌丛植物防风固沙效应[J]. 中国沙漠, 2023, 43(5): 31-40.
doi: 10.7522/j.issn.1000-694X.2023.00030 |
[Hu Guanglu, Chen Haizhi, Ma Jin, et al. Windbreak and sand-fixation effects of typical shrub plants in the desert-oasis transitional zone in the middle reaches of the Heihe River[J]. Journal of Desert Research, 2023, 43(5): 31-40.]
doi: 10.7522/j.issn.1000-694X.2023.00030 |
|
[5] | 肖庆礼, 黄明斌, 邵明安, 等. 黑河中游绿洲不同质地土壤水分的入渗与再分布[J]. 农业工程学报, 2014, 30(2): 124-131. |
[Xiao Qingli, Huang Mingbin, Shao Ming’an, et al. Infiltration and drainage processes of different textural soil moisture in middle reaches of Heihe River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(2): 124-131.] | |
[6] | 王金哲, 张光辉, 王茜, 等. 西北干旱区地下水生态功能评价指标体系构建与应用[J]. 地质学报, 2021, 95(5): 1573-1581. |
[Wang Jinzhe, Zhang Guanghui, Wang Qian, et al. Construction and application of evaluation index system of groundwater ecological function in northwest arid area[J]. Acta Geologica Sinica, 2021, 95(5): 1573-1581.] | |
[7] | 周川, 胡广录, 邓丽媛, 等. 黑河中游不同景观类型土壤有机质与含水率变化特征[J]. 甘肃农业大学学报, 2021, 56(4): 126-135. |
[Zhou Chuan, Hu Guanglu, Deng Liyuan, et al. Variation characteristics of soil organic matter and water content in different types of landscape in the middle reaches of Heihe River[J]. Journal of Gansu Agricultural University, 2021, 56(4): 126-135.] | |
[8] | 孙雪, 龙永丽, 刘乐, 等. 河西走廊中段荒漠绿洲土壤生态化学计量特征[J]. 环境科学, 2023, 44(6): 3353-3363. |
[Sun Xue, Long Yongli, Liu Le, et al. Soil stoichiometry characterization in the oasis-desert transition zone of Linze, Zhangye[J]. Environmental Science, 2023, 44(6): 3353-3363.] | |
[9] | 赵文玥, 吉喜斌, 金博文, 等. 西北干旱区泡泡刺灌丛的降雨再分配特征及影响因素分析[J]. 生态学报, 2022, 42(2): 804-817. |
[Zhao Wenyue, Ji Xibin, Jin Bowen, et al. Rainfall partitioning patterns of the desert shrub Nitraria sphaerocarpa and its influencing factors in drylands of Northwest China[J]. Acta Ecologica Sinica, 2022, 42(2): 804-817.] | |
[10] | 周宏. 基于多入渗模型的荒漠砂质土壤积水入渗模拟对比[J]. 干旱区研究, 2022, 39(1): 123-134. |
[Zhou Hong. A comparative study of ponded infiltration in a desert sandy soil based on multi-hydrological models[J]. Arid Zone Research, 2022, 39(1): 123-134.] | |
[11] |
李昌盛, 张志山, 张金林, 等. 荒漠-绿洲区土壤性质过渡特征[J]. 中国沙漠, 2022, 42(4): 209-218.
doi: 10.7522/j.issn.1000-694X.2021.00155 |
[Li Changsheng, Zhang Zhishan, Zhang Jinlin, et al. Transition characteristics of soil properties in desert-oasis[J]. Journal of Desert Research, 2022, 42(4): 209-218.]
doi: 10.7522/j.issn.1000-694X.2021.00155 |
|
[12] | 赵文智, 任珩, 杜军, 等. 河西走廊绿洲生态建设和农业发展的若干思考与建议[J]. 中国科学院院刊, 2023, 38(3): 424-434. |
[Zhao Wenzhi, Ren Heng, Du Jun, et al. Thoughts and suggestions on oasis ecological construction and agricultural development in Hexi Corridor[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 424-434.] | |
[13] | 何志斌, 赵文智, 方静. 黑河中游地区植被生态需水量估算[J]. 生态学报, 2005, 25(4): 705-710. |
[He Zhibin, Zhao Wenzhi, Fang Jing, et al. Ecological water requirements of vegetation in the middle reaches of Heihe River[J]. Acta Ecologica Sinica, 2005, 25(4): 705-710.] | |
[14] | 赵文智, 程国栋. 干旱区生态水文过程研究若干问题评述[J]. 科学通报, 2001, 46(22): 1851-1857. |
[Zhao Wenzhi, Cheng Guodong. Review of some issues in the study of ecohydrological processes in arid zones[J]. Chinese Science Bulletin, 2001, 46(22): 1851-1857.] | |
[15] |
张克海, 胡广录, 方桥, 等. 黑河中游荒漠绿洲过渡带固沙植被根区土壤含水量[J]. 中国沙漠, 2020, 40(3): 33-42.
doi: 10.7522/j.issn.1000-694X.2019.00057 |
[Zhang Kehai, Hu Guanglu, Fang Qiao, et al. Water content in the root zone of sand-fixation vegetation in desert-oasis ecotone in the middle reaches of the Heihe River[J]. Journal of Desert Research, 2020, 40(3): 33-42.]
doi: 10.7522/j.issn.1000-694X.2019.00057 |
|
[16] | 易军. 黑河中游不同景观单元水分运动与景观间水量交换[D]. 杨凌: 西北农林科技大学, 2016. |
[Yi Jun. Water Transport in Different Landscepes and Water Exchange among Landscape Transtion Zone in the Middle Reaches of Heihe River Basin[D]. Yangling: Northwest A & F University, 2016.] | |
[17] | 蒋小芳, 段翰晨, 廖杰, 等. 基于PLUS-SD耦合模型的黑河流域中游甘临高地区土地利用研究[J]. 干旱区研究, 2022, 39(4): 1246-1258. |
[Jiang Xiaofang, Duan Hanchen, Liao Jie, et al. Land use in the Gan-Lin-Gao region of middle reaches of Heihe River Basin based on a PLUS-SD coupling model[J]. Arid Zone Research, 2022, 39(4): 1246-1258.] | |
[18] | Hou L Z, Wang X S, Hu B X, et al. Experimental and numerical investigations of soil water balance at the hinterland of the Badain Jaran Desert for groundwater recharge estimation[J]. Journal of Hydrology, 2016, 504: 386-396. |
[19] |
洪光宇, 王晓江, 刘铁山, 等. 基于Hydrus-1D模型的毛乌素沙地杨柴(Hedysarum laeve)灌木林土壤含水量模拟[J]. 中国沙漠, 2022, 42(6): 233-242.
doi: 10.7522/j.issn.1000-694X.2022.00045 |
[Hong Guangyu, Wang Xiaojiang, Liu Tieshan, et al. Applicability of Hydrus-1D Model in simulating the soil moisture in Hedysarum leave in Mu Us Sandy Land, China[J]. Journal of Desert Research, 2022, 42(6): 233-242.]
doi: 10.7522/j.issn.1000-694X.2022.00045 |
|
[20] |
洪光宇, 王晓江, 苏庆溥, 等. 毛乌素沙地流动沙丘土壤水分模拟及渗漏特征[J]. 中国沙漠, 2023, 43(2): 288-298.
doi: 10.7522/j.issn.1000-694X.2022.00147 |
[Hong Guangyu, Wang Xiaojiang, Su Qingpu, et al. Simulation of soil moisture and leakage characteristics of mobile dunes in Mu Us Sandy Land[J]. Journal of Desert Research, 2023, 43(2): 288-298.]
doi: 10.7522/j.issn.1000-694X.2022.00147 |
|
[21] | 王宇祥, 刘廷玺, 段利民, 等. 科尔沁不同类型沙丘土壤水分时空变化特征及其环境影响因子[J]. 水土保持学报, 2020, 34(6): 125-134, 142. |
[Wang Yuxiang, Liu Tingxi, Duan Limin, et al. Temporal and spatial variation characteristics of soil moisture and environmental impact factors in different types of dunes in Horqin[J]. Journal of Soil and Water Conservation, 2020, 34(6): 125-134, 142. ] | |
[22] | 代智光. 基于Hydrus-2D的红壤区涌泉根灌自由入渗土壤水分运移数值模拟[J]. 干旱地区农业研究, 2020, 38(4): 27-31. |
[Dai Zhiguang. Numerical simulation of soil water movement in free infiltration under surge-root irrigation in red soil region based on Hydrus-2D[J]. Agricultural Research in the Arid Areas, 2020, 38(4): 27-31.] | |
[23] |
王宇祥, 刘廷玺, 段利民, 等. 基于Hydrus-1D模型的科尔沁沙地沙丘-草甸相间区土壤水分动态模拟[J]. 中国沙漠, 2020, 40(2): 195-205.
doi: 10.7522/j.issn.1000-694X.2019.00085 |
[Wang Yuxiang, Liu Tingxi, Duan Limin, et al. Dynamic law of soil moisture in Horqin Sand Dune-Meadow Area based on Hydrus-1D Model and its applicability evaluation[J]. Journal of Desert Research, 2020, 40(2): 195-205.]
doi: 10.7522/j.issn.1000-694X.2019.00085 |
|
[24] | 吉吉佳门, 程一本, 谌玲珑, 等. 科尔沁沙地樟子松人工林土壤水分动态及其对降雨的响应[J]. 干旱区研究, 2023, 40(5): 756-766. |
[Jiji Jiamen, Cheng Yiben, Chen Linglong, et al. Dynamic changes in soil moisture and its response to rainfall in Pinus sylvestris var. mongolica plantation in Horqin Sandy Land[J]. Arid Zone Research, 2023, 40(5): 756-766.] | |
[25] |
Yang T, Šimůnek J, Mo M, et al. Assessing salinity leaching efficiency in three soils by the HYDRUS-1D and -2D simulations[J]. Soil and Tillage Research, 2019, 194: 104342.
doi: 10.1016/j.still.2019.104342 |
[26] | 付玉娟, 李尧, 喻浩洋, 等. Hydrus-2D模拟起垄覆膜处理对夏玉米生育期水量平衡的影响[J]. 农业工程学报, 2023, 39(10): 76-87. |
[Fu Yujuan, Li Yao, Yu Haoyang, et al. Effects of ridging and plastic film mulching on the water balance of summer maize during its growth period[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(10): 76-87.] | |
[27] | 张炜, 王浩远, 赵玉华, 等. 基于HYDRUS-1D生物滞留设施雨水径流水文调控模拟[J]. 水资源保护, 2022, 38(3): 102-108. |
[Zhang Wei, Wang Haoyuan, Zhao Yuhua, et al. Hydrological regulation simulation of rainwater runoff of bioretention based on HYDRUS-1D[J]. Water Resources Protection, 2022, 38(3): 102-108.] | |
[28] | 郭勇, 尹鑫卫, 李彦, 等. 农田-防护林-荒漠复合系统土壤水盐运移规律及耦合模型建立[J]. 农业工程学报, 2019, 35(17): 87-101. |
[Guo Yong, Yin Xinwei, Li Yan, et al. Soil water and salt dynamics and its coupling model at cropland-treebelt-desert compound system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 87-101.] | |
[29] | 李仙岳, 陈宁, 史海滨, 等. 膜下滴灌玉米番茄间作农田土壤水分分布特征模拟[J]. 农业工程学报, 2019, 35(10): 50-59. |
[Li Xianyue, Chen Ning, Shi Haibin, et al. Soil moisture distribution characteristics simulation of maize-tomato intercropping field with drip-irrigated under plastic mulch[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 50-59.] | |
[30] | 王印杰, 王玉珉. 非饱和土壤水分函数解析与Richards方程入渗新解[J]. 水文, 1996, 1(2): 1-9, 65. |
[Wang Yinjie, Wang Yumin. Analysis of the unsaturated soil moisture function and new interpretation of the richards infiltration equation[J]. Journal of China Hydrology, 1996, 1(2): 1-9, 65. ] | |
[31] | 吉喜斌, 康尔泗, 陈仁升, 等. 植物根系吸水模型研究进展[J]. 西北植物学报, 2006, 26(5): 1079-1086. |
[Ji Xibin, Kang Ersi, Chen Rensheng, et al. Research advances about water uptake models by plant roots[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(5): 1079-1086.] | |
[32] |
Wu X, Zuo Q, Shi J, et al. Introducing water stress hysteresis to the Feddes empirical macroscopic root water uptake model[J]. Agricultural Water Management, 2020, 240: 106293.
doi: 10.1016/j.agwat.2020.106293 |
[33] |
Sadeghi M, Hatch T, Huang G, et al. Estimating soil water flux from single-depth soil moisture data[J]. Journal of Hydrology, 2022, 610: 127999.
doi: 10.1016/j.jhydrol.2022.127999 |
[34] | 陈斌, 鲁延芳, 占玉芳, 等. 荒漠绿洲过渡带土壤水分空间分布特征及对植被的影响[J]. 西北林学院学报, 2023, 38(2): 25-32. |
[Chen Bin, Lu Yanfang, Zhan Yufang, et al. Spatial distribution characteristics of soil moisture and its influence on vegetation in desert-oasis ecoton[J]. Journal of Northwest Forestry University, 2023, 38(2): 25-32.] | |
[35] |
Rojano-Cruz R, Martínez-Moreno F J, Galindo-Zaldívar J, et al. Impacts of a hydroinfiltrator rainwater harvesting system on soil moisture regime and groundwater distribution for olive groves in semi-arid Mediterranean regions[J]. Geoderma, 2023, 438: 116623.
doi: 10.1016/j.geoderma.2023.116623 |
[36] | 巩炜. 荒漠-绿洲过渡带斑块状植被区土壤水分入渗特征及其影响因素[D]. 兰州: 兰州交通大学, 2022. |
[Gong Wei. Characteristics of Soil Water Infiltration and Its Influencing Factors in Patchy Vegetation Areas in the Desert-oasis Transition Zone[D]. Lanzhou: Lanzhou Jiaotong University, 2022.] | |
[37] | 付鹏程, 胡广录, 巩炜, 等. 河西走廊沙漠-绿洲过渡带固沙植物根区土壤物理性质及持水特性[J]. 土壤通报, 2021, 52(4): 811-820. |
[Fu Pengcheng, Hu Guanglu, Gong Wei, et al. Soil physical properties and water retention characteristics of the sand-fixing plant root zone in the desert-oasis transition area of Gansu corridor[J]. Chinese Journal of Soil Science, 2021, 52(4): 811-820.] | |
[38] | 孙龙. 三峡库区紫色砂岩区柑橘地优先路径分布及其对溶质运移影响[D]. 北京: 北京林业大学, 2013. |
[Sun Long. Transportation and Path Distribution of Preferential Flow in Citrus Soils of Purple Sandstone Regions, Three Gorges Reservoir Area[D]. Beijing: Beijing Forestry University, 2013.] | |
[39] | 闫冰, 周智彬, 雷加强, 等. 塔里木沙漠公路防护林带土壤入渗研究[J]. 水土保持学报, 2012, 26(4): 98-103. |
[Yan Bin, Zhou Zhibin, Lei Jiaqianh, et al. Studies on soil infiltration of shelter-forest along Tarim desert highway[J]. Journal of Soil and Water Conservation, 2012, 26(4): 98-103.] | |
[40] | 孔东升, 金博文, 金铭, 等. 黑河流域中游农田防护林小气候效应[J]. 干旱区资源与环境, 2014, 28(1): 32-36. |
[Kong Dongsheng, Jin Bowen, Jin Ming, et al. Microclimate effects of farmland shelterbelt in middle reaches of Heihe basin[J]. Journal of Arid Land Resources and Environment, 2014, 28(1): 32-36.] | |
[41] | 王新平, 李新荣, 康尔泗, 等. 腾格里沙漠东南缘人工植被区降水入渗与再分配规律研究[J]. 生态学报, 2003, 23(6): 1234-1241. |
[Wang Xinping, Li Xinrong, Kang Ersi, et al. The infiltration and redistribution of precipitation in revegetated sand dunes in the Tengger Desert,Shapotou,China[J]. Acta Ecologica Sinica, 2003, 23(6): 1234-1241.] | |
[42] | 付晨馨, 种培芳, 周海, 等. 河西走廊绿洲边缘降水对土壤水分特征的影响[J]. 甘肃农业大学学报, 2023, 58(1): 137-145, 155. |
[Fu Chenxin, Chong Peifang, Zhou Hai, et al. Effect of precipitation on soil moisture characteristics at the oasis edge of the Hexi Corridor[J]. Journal of Gansu Agricultural University, 2023, 58(1): 137-145, 155. ] | |
[43] | 胡安焱, 付稳东, 陈云飞, 等. 毛乌素沙地不同覆被类型土壤水分动态及其对降水的响应[J]. 水土保持研究, 2023, 30(6): 133-142. |
[Hu Anyan, Fu Wendong, Chen Yunfei, et al. Soil moisture dynamics and its response to precipitation in different cover types of the Mu Us sandy land[J]. Research of Soil and Water Conservation, 2023, 30(6): 133-142.] | |
[44] | 车宗玺, 李进军, 汪有奎, 等. 祁连山西段草地土壤温度、水分变化特征[J]. 生态学报, 2018, 38(1): 105-111. |
[Che Zongxi, Li Jinjun, Wang Youkui, et al. Characteristics of soil temperature and water content variation in the western Qilian Mountains[J]. Acta Ecologica Sinica, 2018, 38(1): 105-111.] | |
[45] | 朱丽平, 夏江宝, 赵自国, 等. 温度和粒径分布对贝壳砂土壤水分的影响[J]. 水土保持学报, 2014, 28(6): 268-272, 288. |
[Zhu Liping, Xia Jiangbao, Zhao Ziguo, et al. Effects of temperature and particle size distribution on soil moisture in shell sand[J]. Journal of Soil and Water Conservation, 2014, 28(6): 268-272, 288. ] | |
[46] | 崔珍. 压砂地土壤水分、粒径、容重的空间变异及相关性研究[D]. 兰州: 兰州理工大学, 2018. |
[Cui Zhen. Spatial Variability of Soil Water Content, Particle-size, Bulk Densityand Their Correlations in Gravel-mulched Fields[D]. Lanzhou: Lanzhou University of Technology, 2018.] | |
[47] | 张鹏飞, 贾小旭, 赵春雷, 等. 初始容重对土壤水分特征曲线的影响[J]. 干旱区研究, 2022, 39(4): 1174-1180. |
[Zhang Pengfei, Jia Xiaoxu, Zhao Chunlei, et al. Effects of initial bulk density on soil water characteristic curve[J]. Arid Zone Research, 2022, 39(4): 1174-1180.] | |
[48] | 刘冠亨, 吴冠宇, 李建德, 等. 降雨过程中土壤物理结皮入渗情况及当量孔径的变化研究[J]. 干旱区研究, 2023, 40(10): 1608-1614. |
[Liu Guanheng, Wu Guanyu, Li Jiande, et al. Equivalent pore size characteristics in the soil physical crust[J]. Arid Zone Research, 2023, 40(10): 1608-1614.] | |
[49] | 吴凤平, 王辉, 卢霞, 等. 砂石含量及粒径对红壤水分扩散率的影响[J]. 水土保持学报, 2009, 23(2): 228-231. |
[Wu Fengping, Wang Hui, Lu Xia, et al. Effect of rock fragment content and size on red soil water diffusivity[J]. Journal of Soil and Water Conservation, 2009, 23(2): 228-231.] |
[1] | 张群慧, 常亮, 顾小凡, 王倩, 马卯楠, 李小等, 段瑞, 犹香智. 1979—2020年柴达木盆地人体舒适度指数时空变化及趋势分析[J]. 干旱区研究, 2024, 41(8): 1300-1308. |
[2] | 张宏伟, 别强, 石莹, 苏晓杰, 李欣璋. 黄河流域上游植被覆盖变化特征及其影响因素[J]. 干旱区研究, 2024, 41(8): 1385-1394. |
[3] | 杨竹青, 王磊, 张雪, 申建香, 张伊婧, 李欣宇, 张波, 牛金帅. 典型固沙植物种子萌发和幼苗生长对土壤水分的响应[J]. 干旱区研究, 2024, 41(5): 830-842. |
[4] | 张华, 押海廷, 徐存刚. 兰州市南北两山土壤水分遥感反演及植被需水量估算[J]. 干旱区研究, 2024, 41(4): 566-580. |
[5] | 宋达成, 马全林, 刘世权, 魏林源, 吴昊, 段晓峰, 郭树江. 民勤黏土沙障-人工梭梭林物种多样性及土壤水分变化特征[J]. 干旱区研究, 2024, 41(4): 618-628. |
[6] | 聂汉林, 樊良新, 郭琎, 张梦可, 王志君. 县域尺度下关中地区农作物水足迹时空特征及影响因素[J]. 干旱区研究, 2024, 41(2): 339-352. |
[7] | 胡广录,陶虎,焦娇,白元儒,陈海志,麻进. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414-1424. |
[8] | 刘军彦,王世杰. 基于ICESat-2卫星测高数据的呼伦湖水位变化监测[J]. 干旱区研究, 2023, 40(9): 1438-1445. |
[9] | 李健男, 史海滨, 苗庆丰, 珊丹, 荣浩, 温雅琴. 环境因子对不同种类人工乔木林分蒸腾耗水的影响[J]. 干旱区研究, 2023, 40(8): 1312-1321. |
[10] | 海龙, 周梅, 张嘉開, 洪光宇, 李凤滋, 费菲. 毛乌素沙地不同林龄杨柴灌木林土壤呼吸及其影响因素[J]. 干旱区研究, 2023, 40(7): 1107-1116. |
[11] | 齐润泽, 潘竟虎. 河湟地区生态脆弱性时空演变及影响因素研究[J]. 干旱区研究, 2023, 40(6): 1002-1013. |
[12] | 吉吉佳门, 程一本, 谌玲珑, 万鹏翔, 张祎晖, 杨文斌, 白旭赢, 王涛. 科尔沁沙地樟子松人工林土壤水分动态及其对降雨的响应[J]. 干旱区研究, 2023, 40(5): 756-766. |
[13] | 薛智暄, 张丽, 王新军, 李永康, 张冠宏, 李沛尧. 古尔班通古特沙漠SMAP土壤水分产品降尺度分析[J]. 干旱区研究, 2023, 40(4): 583-593. |
[14] | 马晓蕾,乔雅琦,王婕,焦士兴,张曼. 陕西省水生态足迹深度与广度时空格局及影响因素[J]. 干旱区研究, 2023, 40(3): 469-480. |
[15] | 董翰林, 王文婷, 谢云, 阿依达娜·叶斯那力, 江源天, 徐嘉淇. 新疆气候干湿变化特征及其影响因素[J]. 干旱区研究, 2023, 40(12): 1875-1884. |
|