干旱区研究 ›› 2024, Vol. 41 ›› Issue (1): 104-113.doi: 10.13866/j.azr.2024.01.10 cstr: 32277.14.j.azr.2024.01.10
李敏1,2,3(),孙杰1,2,3(),陈雪1,2,3,刘佳庆1,2,3
收稿日期:
2023-05-18
修回日期:
2023-09-04
出版日期:
2024-01-15
发布日期:
2024-01-24
作者简介:
李敏(1998-),女,硕士研究生,主要从事生态系统生态学研究. E-mail: 基金资助:
LI Min1,2,3(),SUN Jie1,2,3(),CHEN Xue1,2,3,LIU Jiaqing1,2,3
Received:
2023-05-18
Revised:
2023-09-04
Published:
2024-01-15
Online:
2024-01-24
摘要:
为了解荒漠植物叶片碳(C)、氮(N)、磷(P)含量与土壤环境因子的关系,以新疆艾比湖保护区高、低水盐环境下14种荒漠植物群落为研究对象,测定植物叶片C、N、P含量,讨论其化学计量比、植物内稳态特征及其与土壤环境因子的关系。结果表明:(1)在不同水盐环境下,土壤有机碳(SOC)、全氮(TN)、C:N、C:P及植物叶片N、P含量存在显著差异。(2)Pearson相关性分析表明,叶片C:P与土壤电导率(EC)、SOC、C:N和C:P呈显著负相关;叶片C与土壤C:N呈显著负相关;叶片P与土壤SOC、C:N,叶片N与土壤C:N、叶片C:N与土壤TN呈显著正相关;叶片P与土壤C:P、叶片C:N与土壤N:P呈极显著正相关;且冗余分析表明,土壤C:P对艾比湖保护区植物叶片C、N、P含量及化学计量特征影响显著。(3)随土壤水盐的变化,植物叶片N、P含量及N:P的内稳态模型模拟结果不显著,内稳性指数H均大于4,属于绝对稳态,说明该研究区植物对土壤养分的适应性良好。
李敏, 孙杰, 陈雪, 刘佳庆. 荒漠植物叶片-土壤化学计量及植物内稳态特征[J]. 干旱区研究, 2024, 41(1): 104-113.
LI Min, SUN Jie, CHEN Xue, LIU Jiaqing. Leaf-soil stoichiometry and homeostasis characteristics of desert-related plants[J]. Arid Zone Research, 2024, 41(1): 104-113.
表1
样地信息"
样地号 | 群落名称 | 群落物种 | 地貌特征 |
---|---|---|---|
A1 | 梭梭-沙蒿 | 梭梭、沙蒿、刺蓬 | 平沙地 |
A2 | 梭梭-沙蒿 | 梭梭、沙蒿、沙拐枣 | 平沙地 |
A3 | 梭梭-麻黄 | 梭梭、沙蒿、刺蓬、麻黄、碱蓬 | 小山丘 |
A4 | 梭梭-骆驼刺 | 梭梭、骆驼刺、刺蓬、碱蓬 | 细砂地 |
A5 | 梭梭-沙蒿 | 梭梭、骆驼刺、刺蓬、沙蒿 | 细砂地 |
A6 | 胡杨-沙蒿 | 胡杨、沙蒿、碱蓬 | 细砂地 |
A7 | 胡杨-骆驼刺 | 胡杨、骆驼刺、琵琶柴、沙蒿 | 平沙地 |
A8 | 胡杨-梭梭 | 胡杨、梭梭、琵琶柴 | 盐碱地 |
A9 | 胡杨-梭梭 | 胡杨、梭梭、琵琶柴、骆驼刺、罗布麻、花花柴 | 平沙地 |
A10 | 胡杨-骆驼刺 | 胡杨、琵琶柴、骆驼刺、芦苇、沙蒿 | 平沙地 |
A11 | 胡杨-琵琶柴 | 胡杨、琵琶柴、盐节木、白刺、刺蓬、碱蓬 | 平沙地、有结皮 |
A12 | 胡杨-柽柳 | 胡杨、柽柳、骆驼刺、琵琶柴、碱蓬、梭梭 | 平沙地、有结皮 |
A13 | 胡杨-盐豆木 | 胡杨、盐豆木、柽柳、琵琶柴、碱蓬 | 平沙地 |
A14 | 胡杨-盐豆木 | 胡杨、盐豆木、梭梭、罗布麻 | 平沙地 |
[1] | Sterner R W, Elser J J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere[M]. Princeton: Princeton University Press, 2002. |
[2] |
田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说[J]. 植物生态学报, 2021, 45(7): 682-713.
doi: 10.17521/cjpe.2020.0331 |
[Tian Di, Yan Zhengbing, Fang Jingyun. Stoichiometry characteristics of plant ecology and its main hypotheses[J]. Chinese Journal of Plant Ecology, 2021, 45(7): 682-713.]
doi: 10.17521/cjpe.2020.0331 |
|
[3] | 杨文, 周脚根, 王美慧, 等. 亚热带丘陵小流域土壤碳氮磷生态计量特征的空间分异性[J]. 土壤学报, 2015, 52(6): 1336-1344. |
[Yang Wen, Zhou Jiaogen, Wang Meihui, et al. Spatial heterometric characteristics of soil carbon, nitrogen and phosphorus ecometric characteristics in small watersheds of subtropical hills[J]. Journal of Soil Science, 2015, 52(6): 1336-1344.] | |
[4] |
Yang Y, Liu B R, An S S. Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China[J]. Catena, 2018, 166(46): 328-338.
doi: 10.1016/j.catena.2018.04.018 |
[5] | 俞月凤, 何铁光, 曾成城, 等. 喀斯特区不同退化程度植被群落植物-凋落物-土壤-微生物生态化学计量特征[J]. 生态学报, 2022, 42(3): 935-946. |
[Yu Yuefeng, He Tieguang, Zeng Chengcheng, et al. Ecostoichiometry characteristics of vegetation communities with different degrees of degradation of vegetation communities, litter, soil, microorganisms[J]. Acta Ecological Sinica, 2022, 42(3): 935-946.] | |
[6] | 赵君. 甘南亚高寒草甸金露梅氮磷化学计量特征及其机制的研究[D]. 兰州: 兰州大学, 2011. |
[Zhao Jun. Study on Stoichiometric Characteristics of Nitrogen and Phosphorus and its Mechanism in Gannan Alpine Meadow[D]. Lanzhou: Lanzhou University, 2011.] | |
[7] | 陶韦, 武嘉文, 刘长发, 等. 翅碱蓬生态化学计量内稳性对模拟氮磷沉降的响应[J]. 水生态学杂志, 2017, 38(4): 18-26. |
[Tao Wei, Wu Jiawen, Liu Changfa, et al. Response of ecostoichiometric internal stability to simulated nitrogen and phosphorus deposition in P pterosa ensis[J]. Chinese Journal of Hydroecology, 2017, 38(4): 18-26.] | |
[8] |
Van der Putten W H, Bardgett R D, Bever J D. Plant-soil feedbacks: The past, the present and future challenges[J]. Journal of Ecology, 2013, 101(2): 265-276.
doi: 10.1111/jec.2013.101.issue-2 |
[9] | 苏宇航, 宋晓倩, 郑晶文, 等. 四种藜科植物不同器官主要营养元素化学计量特征比较[J]. 生态学杂志, 2023, 42(3): 626-634. |
[Su Yuhang, Song Xiaoqian, Zheng Jingwen, et al. Comparison of the stoichiometric characteristics of major nutrient elements in different organs of four chenopodium species[J]. Chinese Journal of Ecology, 2023, 42(3): 626-634.] | |
[10] | 胡锦香. 刈割和养分添加对内蒙古典型草原植物生态化学计量特征的影响[D]. 呼和浩特: 内蒙古大学, 2021. |
[Hu Jinxiang. Effects of Cutting and Nutrient Addition on Ecological Stoichiometric Characteristics of Typical Grasslands in Inner Mongolia[D]. Hohhot: Inner Mongolia University, 2021.] | |
[11] | 周怡. 敦煌阳关湿地克隆植物芦苇生态化学计量特征的空间变化研究[D]. 兰州: 西北师范大学, 2023. |
[Zhou Yi. Spatial Changes of Ecological Stoichiometric Characteristics of Clonal Plant Reed in Yangguan Wetland, Dunhuang[D]. Lanzhou: Northwest Normal University, 2023.] | |
[12] | 王小娜. 不同森林类型对植物群落结构、植物、凋落物和土壤生态化学计量特征的影响[D]. 兰州: 兰州大学, 2023. |
[Wang Xiaona. Effects of Different Forest Types on Plant Community Structure, Plant, Litter and Soil Ecological Stoichiometric Characteristics[D]. Lanzhou: Lanzhou University, 2023.] | |
[13] | 赵航, 贾彦龙, 王秋凤. 中国地带性森林和农田生态系统C-N-P化学计量统计特征[J]. 第四纪研究, 2014, 34(4): 803-814. |
[Zhao Hang, Jia Yanlong, Wang Qiufeng. C-N-P stoichiometric statistical characteristics of zonal forest and farmland ecosystems in China[J]. Quaternary Sciences, 2014, 34(4): 803-814.] | |
[14] |
王军强, 刘彬, 常凤, 等. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报, 2022, 46(8): 961-970.
doi: 10.17521/cjpe.2021.0434 |
[Wang Junqiang, Liu Bin, Chang Feng, et al. Analysis of plant functional traits and ecological stoichiometry characteristics under water salt gradient in Bosten Lake coastal zone[J]. Chinese Journal of Plant Ecology, 2022, 46(8): 961-970.]
doi: 10.17521/cjpe.2021.0434 |
|
[15] |
郄亚栋, 蒋腊梅, 吕光辉, 等. 温带荒漠植物叶片功能性状对土壤水盐的响应[J]. 生态环境学报, 2018, 27(11): 2000-2010.
doi: 10.16258/j.cnki.1674-5906.2018.11.004 |
[Qie Yadong, Jiang Lamei, Lu Guanghui, et al. Response of leaf functional traits of temperate desert plants to soil water and salt[J]. Ecology and Environmental Sciences, 2018, 27(11): 2000-2010.]
doi: 10.16258/j.cnki.1674-5906.2018.11.004 |
|
[16] | 郄亚栋. 水盐影响下的梭梭生理响应机制及其生态适应[D]. 乌鲁木齐: 新疆大学, 2018. |
[Qie Yadong. Physiological Response Mechanism and Ecological Adaptation of Shuttlefish under the Influence of Water and Salt[D]. Urumqi: Xinjiang University, 2018.] | |
[17] | 徐莉, 李艳红, 海米提·依米提, 等. 艾比湖湿地不同植物群落下土壤水盐空间变异性[J]. 水土保持通报, 2013, 33(6): 279-284. |
[Xu Li, Li Yanhong, Haimiti Yimiti, et al. Spatial variability of soil water and salt under different plant communities in Abi Lake wetland[J]. Bulletin of Soil and Water Conservation, 2013, 33(6): 279-284.] | |
[18] |
Koojiman S A L M. The stoichiometry of animal energetics[J]. Journal of Theoretical Biology, 1995, 177(2): 139-149.
doi: 10.1006/jtbi.1995.0232 |
[19] |
Yu Q, Wilcox K, Pierre K L. Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change[J]. Ecology, 2015, 96(2): 2328-2335.
doi: 10.1890/14-1897.1 |
[20] |
Persson J, Fink P, Goto A, et al. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs[J]. Oikos, 2010, 119(5): 741-751.
doi: 10.1111/j.1600-0706.2009.18545.x |
[21] |
Tian H Q, Chen G S, Zhang C. Pattern and variation of C: N: P ratios in China’s soil: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1): 139-151.
doi: 10.1007/s10533-009-9382-0 |
[22] |
Chapin III FS. Nutrient allocation and responses to defoliation in tundra plants[J]. Arctic and Alpine Research, 1980, 12(4): 553-563.
doi: 10.2307/1550500 |
[23] | 黄磊, 张永娥, 邵芳丽, 等. 冀北山地天然次生林土壤生态化学计量特征及影响因素[J]. 生态学报, 2021, 41(15): 6267-6279. |
[Huang Lei, Zhang Yong’e, Shao Fangli, et al. Soil ecostoichiometry characteristics and influencing factors of natural secondary forest in northern Hebei[J]. Acta Ecological Sinica, 2021, 41(15): 6267-6279.] | |
[24] | 李从娟, 徐新文, 孙永强, 等. 不同生境下三种荒漠植物叶片及土壤C、N、P的化学计量特征[J]. 干旱区地理, 2014, 37(5): 996-1004. |
[Li Congjuan, Xu Xinwen, Sun Yongqiang, et al. Stoichiometric characteristics of leaves and soil C, N and P of three desert plants under different habitats[J]. Arid Land Geography, 2014, 37(5): 996-1004.] | |
[25] |
聂明鹤, 沈艳, 陆颖, 等. 宁夏盐池县荒漠草原区不同群落优势植物叶片-土壤生态化学计量特征[J]. 草地学报, 2021, 29(1): 131-140.
doi: 10.11733/j.issn.1007-0435.2021.01.016 |
[Nie Minghe, Shen Yan, Lu Ying, et al. Leaf-soil ecostoichiometric characteristics of dominant plants in different communities in desert grassland area of Yanchi County, Ningxia[J]. Journal of Grassland, 2021, 29(1): 131-140.]
doi: 10.11733/j.issn.1007-0435.2021.01.016 |
|
[26] | 娄泊远, 王永东, 闫晋升, 等. 亚寒带荒漠草原不同树种人工林土壤生态化学计量特征[J]. 干旱区研究, 2021, 38(5): 1385-1392. |
[Lou Boyuan, Wang Yongdong, Yan Jinsheng, et al. Soil ecostoichiometry characteristics of plantations of different tree species in subarctic desert steppe[J]. Arid Zone Research, 2021, 38(5): 1385-1392.] | |
[27] | 何家莉, 宋怡珂, 王金牛, 等. 岷江源区高山林草交错带土壤碳、氮、磷生态化学计量关系的时空变化[J]. 应用与环境生物学报, 2021, 27(4): 869-877. |
[He Jiali, Song Yike, Wang Jinniu, et al. Spatial-temporal variation of soil carbon, nitrogen and phosphorus ecostoichiometry in alpine forest-grass interlaced zone of Minjiang source area[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(4): 869-877.] | |
[28] |
Farrington V H. Nutrient limitation and soil development: Experimental test of a biogeochemical theory[J]. Biogeochemistry, 1997, 37(1): 63-75.
doi: 10.1023/A:1005757218475 |
[29] | 陈悦, 吕光辉, 曹靖, 等. 荒漠土壤水、盐、有机质空间分布及相互关系[J]. 江苏农业科学, 2018, 46(12): 254-257, 265. |
[Chen Yue, Lv Guanghui, Cao Jing, et al. Spatial distribution and interrelationship of water, salt and organic matter in desert soil[J]. Jiangsu Agricultural Sciences, 2018, 46(12): 254-257, 265.] | |
[30] |
单秀枝, 魏由庆, 严慧峻, 等. 土壤有机质含量对土壤水动力学参数的影响[J]. 土壤学报, 1998, 35(1): 1-9.
doi: 10.1111/ejs.1984.35.issue-1 |
[San Xiuzhi, Wei Youqing, Yan Huijun, et al. Effects of soil organic matter content on soil hydrodynamic parameters[J]. Journal of Soil Science, 1998, 35(1): 1-9.]
doi: 10.1111/ejs.1984.35.issue-1 |
|
[31] |
Güsewell S. N: P ratios in terrestrial plants: Variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266.
doi: 10.1111/j.1469-8137.2004.01192.x pmid: 33873556 |
[32] | 李蕊希, 吴雪, 贡璐. 塔里木河上游典型荒漠植物叶片性状及其与土壤因子的关系[J]. 生态学报, 2022, 42(13): 5360-5370. |
[Li Ruixi, Wu Xue, Gong Lu. Leaf traits of typical desert plants in the upper reaches of Tarim River and their relationship with soil factors[J]. Acta Ecological Sinica, 2022, 42(13): 5360-5370.] | |
[33] |
Elser J J, Sterner R W, Gorokhova E. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6): 540-550.
doi: 10.1111/ele.2000.3.issue-6 |
[34] | 万芳, 蒙仲举, 党晓宏. 荒漠草原建群种及其枯落物的C、N、P生态化学计量特征[J]. 东北林业大学学报, 2020, 48(2): 29-33. |
[Wan Fang, Meng Zhongju, Dang Xiaohong. Ecostoichiometry characteristics of C, N and P of desert steppe vegetation species and their litter[J]. Journal of Northeast Forestry University, 2020, 48(2): 29-33.] | |
[35] |
Aerts R. Nutrient resorption from senscing leaves of perennials; are there general patterns[J]. Journal of Ecology, 1996, 84(4): 597-608.
doi: 10.2307/2261481 |
[36] |
Elser J J, Dobberfuhl D R, MacKay N A, et al. Organism size, life history and N: P stoichiometry: Toward a unified view of cellular and ecosystem processes[J]. BioScience, 1996, 46(9): 674-684.
doi: 10.2307/1312897 |
[37] |
Koerselman W, Meuleman A F M. The vegetation N: P ratio: A new tool to detect the nature of nutrien ltimitation[J]. The Journal of Applied Ecology, 1996, 33(6): 1441.
doi: 10.2307/2404783 |
[38] |
He M Z, Dijkstra F A, Zhang K, et al. Leaf nitrogen and phosphorus of temperate desert plants in response to climate andsoil nutrient availability[J]. Scientific Reports, 2014, 4(1): 6932-6939.
doi: 10.1038/srep06932 |
[39] |
Zhang J H, Zhao N, Liu C C, et al. C: N: P stoichiometry in China’s forests: From organs to ecosystems[J]. Functional Ecology, 2017, 32(2): 50-60.
doi: 10.1111/fec.2018.32.issue-1 |
[40] | 谢明君, 李广, 闫丽娟, 等. 黄土丘陵区春小麦水分调控下植物-土壤碳氮磷化学计量学及其稳态性特征[J]. 干旱地区农业研究, 2022, 40(1): 184-192, 202. |
[Xie Mingjun, Li Guang, Yan Lijuan, et al. Plant-soil carbon, nitrogen and phosphorus stoichiometry and steady-state characteristics of spring wheat water regulation in loess hilly area[J]. Agricultural Research in the Arid Areas, 2022, 40(1): 184-192, 202.] | |
[41] |
Elser J J, Fagan W F, Kerkhoff A J, et al. Biological stoichiometry of plant production metabolism, scaling and ecological response to global change[J]. New Phytologist, 2010, 186(3): 593-608.
doi: 10.1111/j.1469-8137.2010.03214.x pmid: 20298486 |
[42] |
Yu Q, Chen Q, Elser J J, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecology Letters, 2010, 13(11): 1390-1399.
doi: 10.1111/j.1461-0248.2010.01532.x pmid: 20849443 |
[43] |
Yu Q, Elser J, He N, et al. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland[J]. Oecologia, 2011, 166(1): 1-10.
doi: 10.1007/s00442-010-1902-z pmid: 21221646 |
[1] | 张彬, 郑新军, 王玉刚, 唐立松, 李彦, 杜澜, 田胜川. 1990—2022年天山北坡地区不同开垦年限耕层土壤盐分变化[J]. 干旱区研究, 2024, 41(9): 1435-1445. |
[2] | 邱春霞, 刘晓宏, 李豆, 张佳淼, 李朋飞. 机载LiDAR和模糊推理系统在黄土高原土壤侵蚀监测中的应用[J]. 干旱区研究, 2024, 41(8): 1331-1342. |
[3] | 万佳怡, 矢佳昱, 张华敏, 李兰晖, 丁明军. 三江源区不同覆被类型高寒草甸土壤水分变化特征[J]. 干旱区研究, 2024, 41(8): 1343-1353. |
[4] | 董鹏, 任悦, 高广磊, 丁国栋, 张英. 呼伦贝尔沙地樟子松枯落物和土壤碳、氮、磷化学计量特征[J]. 干旱区研究, 2024, 41(8): 1354-1363. |
[5] | 张培豪, 邢光延, 赵吉美, 刘昌义, 胡夏嵩. 轻度放牧和禁牧草地土壤物理力学性质特征——以夏藏滩滑坡区为例[J]. 干旱区研究, 2024, 41(8): 1364-1372. |
[6] | 龙威夷, 施建飞, 李双媛, 孙金金, 王玉刚. 流域绿洲土壤盐分多模型反演效果评估[J]. 干旱区研究, 2024, 41(7): 1120-1130. |
[7] | 郑柳娜, 江红南, 孙梦婷. 基于遥感影像的新疆渭干河—库车河三角洲土壤水盐与植被覆盖度的关系[J]. 干旱区研究, 2024, 41(7): 1131-1139. |
[8] | 唐维春, 刘小娥, 苏世平, 田晓娟, 唐庆童, 张婧. 甘肃兴隆山不同演替阶段群落土壤氮素矿化对温度的响应[J]. 干旱区研究, 2024, 41(6): 984-997. |
[9] | 毛光锐, 赵锦梅, 朱恭, 崔海明, 刘万智. 黄土高原高速公路边坡草本群落植被特征及其与土壤的关系[J]. 干旱区研究, 2024, 41(5): 788-796. |
[10] | 雷菲亚, 李小双, 陶冶, 尹本丰, 荣晓莹, 张静, 陆永兴, 郭星, 周晓兵, 张元明. 西北干旱区藓类结皮覆盖下土壤多功能性特征及影响因子[J]. 干旱区研究, 2024, 41(5): 812-820. |
[11] | 杨竹青, 王磊, 张雪, 申建香, 张伊婧, 李欣宇, 张波, 牛金帅. 典型固沙植物种子萌发和幼苗生长对土壤水分的响应[J]. 干旱区研究, 2024, 41(5): 830-842. |
[12] | 洪国军, 谢俊博, 张灵, 范振岐, 喻彩丽, 付仙兵, 李旭. 基于多光谱影像的阿拉尔垦区棉田土壤盐分反演[J]. 干旱区研究, 2024, 41(5): 894-904. |
[13] | 胡广录, 刘鹏, 李嘉楠, 陶虎, 周成乾. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565. |
[14] | 张华, 押海廷, 徐存刚. 兰州市南北两山土壤水分遥感反演及植被需水量估算[J]. 干旱区研究, 2024, 41(4): 566-580. |
[15] | 越大林, 李国荣, 李进芳, 李希来, 赵健赟, 朱海丽, 刘亚斌, 胡夏嵩. 黄河源高寒退化草地典型鼠丘土壤风蚀及养分流失规律研究[J]. 干旱区研究, 2024, 41(4): 603-617. |
|