干旱区研究 ›› 2023, Vol. 40 ›› Issue (1): 19-29.doi: 10.13866/j.azr.2023.01.03 cstr: 32277.14.j.azr.2023.01.03
收稿日期:
2022-06-02
修回日期:
2022-12-12
出版日期:
2023-01-15
发布日期:
2023-02-24
作者简介:
姚岱均(2001-),男,硕士研究生,研究方向为自然地理与资源环境. E-mail: 基金资助:
YAO Daijun(),LIU Kang(),HUI Yuxiang,WANG Kaixin
Received:
2022-06-02
Revised:
2022-12-12
Published:
2023-01-15
Online:
2023-02-24
摘要:
为研究气候变化背景下天水麦积山风景名胜区1980—2019年油松径向生长与气候因子响应模式的变化及机制,利用树轮气候学方法和Vaganov-Shashkin模型,研究了气温突变前后天水麦积山油松的气候响应和生长过程。结果表明:(1) 麦积山气温于1997年发生突变,突变后气温显著高于突变前。1980—1997年和1998—2019年油松与气候因子响应变化呈相关性下降(5月气温)、上升(10月气温、降水,7月降水,12月气温)和震荡(6月降水、7月气温)3种模式。(2) 气候显著变暖使春秋季油松生长热量供应更加充足,生长季显著延长;夏季油松生长受到高温影响和水分胁迫。(3) 油松生长与气候因子响应模式的变化主要是气候变暖和生长季的变化引起,如果气温持续上升其响应模式可能进一步变化,类似的变化过程可能也在其他油松生长区存在。
姚岱均, 刘康, 惠俞翔, 王凯欣. 天水麦积山油松树轮宽度对气候变化的响应及其机制[J]. 干旱区研究, 2023, 40(1): 19-29.
YAO Daijun, LIU Kang, HUI Yuxiang, WANG Kaixin. The response and mechanism of Pinus tabulaeformis tree-ring width to climate change in Maijishan Mountain, Tianshui, China[J]. Arid Zone Research, 2023, 40(1): 19-29.
表2
麦积山油松生理过程模拟参数"
参数 | 描述 | 值 |
---|---|---|
T1 | 生长最低气温/℃ | 5 |
T2 | 最适生长气温下限/℃ | 15 |
T3 | 最适生长气温上限/℃ | 23 |
T4 | 生长最高气温/℃ | 33 |
Wo | 初始土壤湿度 | 0.225 |
Pmax | 饱和土壤的最大日降水量/mm | 82 |
lr(Droot) | 根深/mm | 1600 |
C2(K2) | 蒸腾作用第一系数 | 0.1175 |
C3(K3) | 蒸腾作用第二系数 | 0.185 |
C1(K1) | 降水渗透到土壤的系数(未被截流的系数) | 0.74 |
W1 | 生长最低土壤含水量(与饱和土壤含水量比) | 0 |
W2 | 最适生长土壤含水量下限 | 0.475 |
W3 | 最适生长土壤含水量上限 | 0.725 |
W4 | 植物生长最高湿度(与饱和含水量比) | 0.95 |
Cd(Kd) | 土壤排水系数 | 0.001 |
Tg(Tbeg) | 植物开始生长时的积温/℃ | 10 |
[1] |
Shishov V V, Tychkov I I, Popkova M I, et al. VS-oscilloscope: A new tool to parameterize tree radial growth based on climate conditions[J]. Dendrochronologia, 2016, 39(34): 42-50.
doi: 10.1016/j.dendro.2015.10.001 |
[2] | 邵雪梅. 树轮年代学的若干进展[J]. 第四纪研究, 1997, 17(3): 265-271. |
[Shao Xuemei. Advancements in dendrochronology[J]. Quaternary Science, 1997, 17(3): 265-271.] | |
[3] | 高琳琳, 勾晓华, 邓洋, 等. 树轮气候学中分异现象的研究进展[J]. 冰川冻土, 2011, 33(2): 453-460. |
[Gao Linlin, Gou Xiaohua, Deng Yang, et al. An overview of the divergence phenomenon in dendroclimatology[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 453-460.] | |
[4] |
D’Arrigo R, Wilson R, Liepert B, et al. On the ‘Divergence problem’ in northern forests: A review of the tree-ring evidence and possible causes[J]. Glob Planet Change, 2008, 60(3-4): 289-305.
doi: 10.1016/j.gloplacha.2007.03.004 |
[5] | 于健, 徐倩倩, 何秀, 等. 长白山东坡落叶松树轮宽度对气候响应的分离效应[J]. 中南林业科技大学学报, 2013, 33(3): 89-97. |
[Yu Jian, Xu Qianqian, He Xiu, et al. Response divergence of Larix olgensis tree-ring widths to climate variation in eastern slope of Changbai Mountain, Northeast China[J]. Journal of Central South University of Forestry & Technology, 2013, 33(3): 89-97.] | |
[6] | 高娜, 李书恒, 白红英, 等. 秦岭牛背梁自然保护区巴山冷杉(Abies fargesii)树轮宽度对气候变化响应的分离效应[J]. 生态学杂志, 2016, 35(8): 2056-2065. |
[Gao Na, Li Shuheng, Bai Hongying, et al. Response divergence of Abies fargesii tree-ring widths to climate variation in the Niubeiliang Nature Reserve of the Qinling Mountains[J]. Chinese Journal of Ecology, 2016, 35(8): 2056-2065.] | |
[7] |
李宗善, 刘国华, 傅伯杰, 等. 川西卧龙国家级自然保护区树木生长对气候响应的时间稳定性评估[J]. 植物生态学报, 2010, 34(9): 1045-1057.
doi: 10.3773/j.issn.1005-264x.2010.09.005 |
[Li Zongshan, Liu Guohua, Fu Bojie, et al. Evaluation of temporal stability in tree growth-climate response in Wolong National Natural Reserve, western Sichuan, China[J]. Chinese Journal of Plant Ecology, 2010, 34(9): 1045-1057.]
doi: 10.3773/j.issn.1005-264x.2010.09.005 |
|
[8] |
Shi C M, Valerie M-D, Valerie D, et al. An unstable tree-growth response to climate in two 500 year chronologies, North Eastern Qinghai-Tibetan Plateau[J]. Dendrochronologia, 2010, 28(4): 225-237.
doi: 10.1016/j.dendro.2009.12.002 |
[9] |
Babst F, Bouriaud O, Poulter B, et al. Twentieth century redistribution in climatic drivers of global tree growth[J]. Science Advances, 2019, 5(1): eaat4313.
doi: 10.1126/sciadv.aat4313 |
[10] |
陈兰, 李书恒, 侯丽, 等. 基于Vaganov-Shashkin模型的太白红杉径向生长对气候要素的响应[J]. 应用生态学报, 2017, 28(8): 2470-2480.
doi: 10.13287/j.1001-9332.201708.038 |
[Chen Lan, Li Shuheng, Hou Li, et al. Response of Larix chinensis radial growth to climatic factors based on the Vaganov-Shashkin model[J]. Chinese Journal of Applied Ecology, 2017, 28(8): 2470-2480.]
doi: 10.13287/j.1001-9332.201708.038 |
|
[11] |
包光, 刘治野, 刘娜, 等. 呼伦贝尔沙地樟子松径向生长特征的VS模型模拟分析[J]. 应用生态学报, 2021, 32(10): 3448-3458.
doi: 10.13287/j.1001-9332.202110.038 |
[Bao Guang, Liu Zhiye, Liu Na, et al. Simulation analysis of the radial growth characteristics of Pinus sylvestris var. mongolica in Hulunbuir sandy land by Vaganov-Shashkin Model[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3448-3458.]
doi: 10.13287/j.1001-9332.202110.038 |
|
[12] |
Chen L, Huang J-G, Stadt K J, et al. Drought explains variation in the radial growth of white spruce in western Canada[J]. Agricultural and Forest Meteorology, 2017, 233(54): 133-142.
doi: 10.1016/j.agrformet.2016.11.012 |
[13] |
Song H M, Liu Y, Li Q, et al. Tree-ring based may-july temperature reconstruction since AD 1630 on the Western Loess Plateau, China[J]. PloS one, 2014, 9(4): e93504.
doi: 10.1371/journal.pone.0093504 |
[14] | 宁应之, 王娟, 刘娜, 等. 甘肃天水麦积山风景名胜区土壤纤毛虫的物种多样性[J]. 动物学研究, 2007, 28(4): 367-373. |
[Ning Yingzhi, Wang Juan, Liu Na, et al. Species diversity of soil ciliates in scenic spots and historic sites of Maijishan, Tianshui, Gansu[J]. Zoological Research, 2007, 28(4): 367-373.] | |
[15] | 郭继荣. 甘肃天水麦积山风景区野生药用植物资源调查研究[J]. 林业科技通讯, 2019, 553(1): 68-69. |
[Guo Jirong. Research on resources of wild medicinal plants in Maiji Mountain Scenic Spot of Tianshui, Gansu[J]. Forest Science and Technology, 2019, 553(1): 68-69.] | |
[16] | 甘肃省地方史志编篡委员, 甘肃省志自然地理志编篡委员会. 甘肃省自然地理志[M]. 兰州: 甘肃文化出版社, 2018: 528-529. |
[Compilation Committee of Gansu Provincial History Local Chronicles, Gansu Provincial Local Chronicles, Physical Geography Local Chronicles Compilation Committee. Gansu Province local Chronicles:Physical Geography[M]. Lanzhou: Gansu Culture Publishing House, 2018: 528-529.] | |
[17] | 秦进. 基于树木年轮的秦岭林线典型树种对气候的响应与区域气温重建[D]. 西安: 西北大学, 2018. |
[Qin Jin. The Tree-ring Based Study on Response of Typical Timberline Tree Species in The Qinling Mountains to Climate and Regional Temperature Reconstruction[D]. Xi’an: Northwest University, 2018.] | |
[18] | 齐贵增, 白红英, 孟清, 等. 1959—2018年秦岭南北春季气候时空变化特征[J]. 干旱区研究, 2019, 36(5): 1079-1091. |
[Qi Guizeng, Bai Hongying, Meng Qing, et al. Climate change in the Qinling Mountains in Spring during 1959-2018[J]. Arid Zone Research, 2019, 36(5): 1079-1091.] | |
[19] | 杨凤梅, 王乃昂, 王式功, 等. 近60 a来西秦岭及周边地区降水的分布格局[J]. 干旱区地理, 2015, 38(5): 867-879. |
[Yang Fengmei, Wang Nai’ang, Wang Shigong, et al. Spatial and temporal patterns of precipitation in the west Qinling over the past 60 years[J]. Arid Land Geography, 2015, 38(5): 867-879.] | |
[20] |
李双双, 延军平, 万佳. 全球气候变化下秦岭南北气温变化特征[J]. 地理科学, 2012, 32(7): 853-858.
doi: 10.13249/j.cnki.sgs.2012.07.853 |
[Li Shuangshuang, Yan Junping, Wan Jia. The characteristics of temperature change in Qinling Mountains[J]. Scientia Geographica Sinica, 2012, 32(7): 853-858.]
doi: 10.13249/j.cnki.sgs.2012.07.853 |
|
[21] |
Tychkov I I, Sviderskaya I V, Babushkina E A, et al. How can the parameterization of a process-based model help us understand real tree-ring growth?[J]. Trees, 2019, 33(2): 345-357.
doi: 10.1007/s00468-018-1780-2 |
[22] | 宋维峰. 林木根系与均质土间相互物理作用机理研究[D]. 北京: 北京林业大学, 2006. |
[Song Weifeng. Study on Physical Mechanism of Interface Between Root System and Loess Soils[D]. Beijing: Beijing Forestry University, 2006.] | |
[23] | 吴芹. 土壤水分对3个造林树种光合生理生化特性的影响[D]. 泰安: 山东农业大学, 2013. |
[Wu Qin. Effect of Sail Moisture an Photosynthetic Physiological and Biochemical Characteristics of Three Afforestation Tree Species[D]. Tai’an: Shandong Agricultural University, 2013.] | |
[24] | 刘小林, 郑子龙, 蔺岩雄, 等. 甘肃小陇山林区主要林分类型土壤水分物理性质研究[J]. 西北林学院学报, 2013, 28(1): 7-11. |
[Liu Xiaolin, Zheng Zilong, Lin Yanxiong, et al. Physical characteristics of the soil moisture in the main forest tpes in Xiaolong Mountain[J]. Journal of Northwest Forestry University, 2013, 28(1): 7-11.] | |
[25] | 刘卫民, 蒲金涌, 姚晓红, 等. 天水旱作区土壤水分变化规律及其与冬小麦产量关系研究[J]. 干旱地区农业研究, 2008, 26(3): 29-32. |
[Liu Weimin, Pu Jinyong, Yao Xiaohong, et al. A studying on variation law of soil moisture and relationship between soil moisture and output of wheat at Tianshui, Gansu in Arid Region[J]. Agricultural Research in the Arid Areas, 2008, 26(3): 29-32.] | |
[26] |
Chen F, Yuan Y J. May-June maximum temperature reconstruction from mean earlywood density in north central China and its linkages to the summer monsoon activities[J]. PLoS ONE, 2017, 9(9): e107501.
doi: 10.1371/journal.pone.0107501 |
[27] |
Wu M L, Liu N, Bao G, et al. Climatic factors of radial growth of Pinus tabulaeformis in eastern Gansu, Northwest China based on Vaganov-Shashkin model[J]. Geografiska Annaler: Series A, Physical Geography, 2020, 102(3): 196-208.
doi: 10.1080/04353676.2020.1763632 |
[28] | 杨东, 杨秀琴. 甘肃武都五凤山林区油松人工林的生物量和生产力研究[J]. 西北师范大学学报(自然科学版), 2004, 40(1): 70-75. |
[Yang Dong, Yang Xiuqin. Studies on biomass and productivity of Pinus tabulaeforrnis planation in the Wufengshan of Wudu, Gansu Province[J]. Journal of Northwest Normal University (Natural Science), 2004, 40(1): 70-75.] | |
[29] | 史江峰, 刘禹, Vaganov E, 等. 贺兰山油松生长的气候响应机制初步探讨[J]. 第四纪研究, 2005, 25(2): 245-251. |
[Shi Jiangfeng, Liu Yu, Vaganov E, et al. A primary discussion on the climatic response of Pinus tabulaefomis in the Helan Mountain[J]. Quaternary Science, 2005, 25(2): 245-251.] | |
[30] | 史江峰, 刘禹, 蔡秋芳, 等. 油松(Pinus tabulaeformis)树轮宽度与气候因子统计相关的生理机制——以贺兰山地区为例[J]. 生态学报, 2006, 26(3): 697-705. |
[Shi Jiangfeng, Liu Yu, Cai Qiufang, et al. A case study of physiological characteristics of statistical correlation between Pinus tabulaeformis tree-ring widths and climatic factors[J]. Acta Ecologica Sinica, 2006, 26(3): 697-705.] | |
[31] | 杨琪, 李书恒, 李家豪, 等. 秦岭森林植被物候及其对气象因子的响应[J]. 干旱区研究, 2021, 38(4): 1065-1074. |
[Yang Qi, Li Shuheng, Li Jiahao, et al. Phenology of forest vegetation and its response to climate change in the Qinling Mountains[J]. Arid Zone Research, 2021, 38(4): 1065-1074.] |
[1] | 吕壮壮, 乔庆庆, 董孙艺, 汪冬. 中中新世气候适宜期全球变暖背景下亚洲内陆干旱区古气候演化特征及驱动机制[J]. 干旱区研究, 2024, 41(8): 1309-1322. |
[2] | 周杰, 王旭虎, 杜维波, 周晓雷, 杨洁, 张晓玮. 气候变化背景下的天山云杉潜在分布区预测[J]. 干旱区研究, 2024, 41(7): 1167-1176. |
[3] | 梁双河, 牛最荣, 贾玲. 祖厉河干流近65 a径流变化及归因分析[J]. 干旱区研究, 2024, 41(6): 928-939. |
[4] | 唐可欣, 郭建斌, 何亮, 陈林, 万龙. 中国旱区GPP时空演变特征及影响因素研究[J]. 干旱区研究, 2024, 41(6): 964-973. |
[5] | 杨斐, 张文韬, 张飞民, 王澄海. 1961—2022年祁连山气候特征及其变化[J]. 干旱区研究, 2024, 41(10): 1627-1638. |
[6] | 张音, 孙从建, 刘庚, 钞锦龙, 耿甜伟. 近20 a塔里木河流域山区NDSI对气候变化的响应[J]. 干旱区研究, 2024, 41(10): 1639-1648. |
[7] | 程倩, 齐月, 刘明春, 张鹏, 丁文魁, 李兴宇, 任丽雯, 杨华. 气候变化及人类活动背景下石羊河流域生态与水资源变化特征[J]. 干旱区研究, 2024, 41(10): 1672-1684. |
[8] | 樊玉科, 任菊, 王润龙, 周栋栋, 潘自凯, 张晓玮, 周晓雷. 气候变化背景下白皮松在中国潜在适宜分布预测[J]. 干旱区研究, 2024, 41(10): 1719-1730. |
[9] | 齐容镰, 李庆波, 任佳, 邹苗, 杨昊鹏, 魏耀峰, 唐琼. “三北”工程地区植被覆盖变化特征及其驱动力分析——以宁夏为例[J]. 干旱区研究, 2024, 41(10): 1740-1752. |
[10] | 赵雨琪, 魏天兴. 1990—2020年黄土高原典型县域植被覆盖变化及影响因素[J]. 干旱区研究, 2024, 41(1): 147-156. |
[11] | 胡广录,陶虎,焦娇,白元儒,陈海志,麻进. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414-1424. |
[12] | 周小东, 常顺利, 王冠正, 张毓涛, 喻树龙, 张同文. 天山北坡中段雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2023, 40(8): 1215-1228. |
[13] | 孟乘枫, 仲涛, 郑江华, 王南, 刘泽轩, 任祥源. 昆仑山冰湖分布时空特征及驱动力[J]. 干旱区研究, 2023, 40(7): 1094-1106. |
[14] | 赵艳芬, 潘伯荣. 气候变化情景下革苞菊属在中国的潜在地理分布[J]. 干旱区研究, 2023, 40(6): 949-957. |
[15] | 姚春艳, 刘洪鹄, 刘竞. 长江源区1980—2020年水沙变化规律[J]. 干旱区研究, 2023, 40(5): 726-736. |
|