干旱区研究 ›› 2022, Vol. 39 ›› Issue (5): 1564-1575.doi: 10.13866/j.azr.2022.05.21

• 水土资源 • 上一篇    下一篇

伊犁河—巴尔喀什湖流域实际蒸散发时空变化特征及其环境影响因子

姚佳1(),陈启慧1,李琼芳1,2(),崔罡1,张良憬3   

  1. 1.河海大学水文水资源学院,江苏 南京 210098
    2.长江保护与绿色发展研究院,江苏 南京 210098
    3.河海大学环境学院,江苏 南京 210098
  • 收稿日期:2022-04-18 修回日期:2022-06-25 出版日期:2022-09-15 发布日期:2022-10-25
  • 通讯作者: 李琼芳
  • 作者简介:姚佳(1998-),女,硕士研究生,研究方向为生态水文. E-mail: 2761566292@qq.com
  • 基金资助:
    新疆维吾尔自治区寒旱区水资源与生态水利工程研究中心(院士专家工作站)合作研究项目(2020.E-001);新疆维吾尔自治区寒旱区水资源与生态水利工程研究中心(院士专家工作站)合作研究项目(2020.E-002);新疆维吾尔自治区寒旱区水资源与生态水利工程研究中心(院士专家工作站)合作研究项目(2020. E-004);中央高校基本科研业务费项目(国际河流专项)(B210204024);中央高校基本科研业务费项目(国际河流专项)(B210204025);中央高校基本科研业务费项目(国际河流专项)(B210204026)

Spatial and temporal variability of evapotranspiration and influencing factors in the Ili River-Balkhash Lake Basin

YAO Jia1(),CHEN Qihui1,LI Qiongfang1,2(),CUI Gang1,ZHANG Liangjing3   

  1. 1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, Jiangsu, China
    2. Yangtze Institute for Conservation and Green Development, Nanjing 210098, Jiangsu, China
    3. College of Environment, Hohai University, Nanjing 210098, Jiangsu
  • Received:2022-04-18 Revised:2022-06-25 Online:2022-09-15 Published:2022-10-25
  • Contact: Qiongfang LI

摘要:

基于多种遥感数据,运用Mann-Kendall法、Theil-Sen median 趋势分析、Pearson相关分析、水量平衡原理,探讨2000—2020年伊犁河—巴尔喀什湖流域实际蒸散发时空变化规律及其主要影响因素,并讨论了流域生态系统水资源供给量的变化。结果表明:(1) 流域上、中、下游的多年平均年蒸散发量分别为439.0 mm、317.9 mm、201.1 mm;其中上、中游在夏季的日蒸散发量最大,而下游在春季最大;流域上、中游蒸散发量的年内分配均为“单峰型”,峰值分别在7月与6月,下游为“双峰型”,峰值分别在3月与11月。(2) 流域上、下游的年蒸散发量均呈现显著的上升趋势,显著区域主要分布在上游的伊犁河谷、天山山脉与下游的伊犁河三角洲附近;相对2000—2010年,2010—2020年伊犁河谷和伊犁河三角洲地区多年平均年蒸散发增加超过10%。(3) 流域上、中游蒸散发与气温和NDVI呈现较高的正相关性;流域下游蒸散发与土壤湿度呈现较高的正相关性。(4) 流域生态系统的水资源供给服务总量在2000—2020年有所下降,其中上游已多次出现缺口,中、下游在2020年开始出现缺口,需通过控制用水总量、提升用水效率保障水资源供需平衡。

关键词: 伊犁河—巴尔喀什湖流域, 蒸散发, 时空变化, 驱动因素, Pearson相关

Abstract:

From 2000 to 2020, remote sensing data, such as MODIS and FLDAS, the Mann-Kendall method, Theil-Sen median trend analysis, Pearson correlation analysis, and the water balance principle, were applied to explore the spatial distribution and temporal variation patterns of actual evapotranspiration in the Ili River-Balkhash Lake basin, along with its main influencing factors. In addition, changes in the ecosystem water supply were discussed. The results were as follows: (1) the upper, middle, and lower Ili River-Balkhash Lake basins had an average annual evapotranspiration of 439.0 mm, 317.9 mm, and 201.1 mm, respectively. The daily evapotranspiration in the upper and middle basins was the greatest in the summer, while the lower basin had the greatest daily evapotranspiration in the spring. The intra-annual distribution of evapotranspiration in the upper and middle basins was “unimodal,” with peaks in July and June, respectively. It was “bimodal” in the lower basin, with peaks in March and November, respectively. (2) The annual evapotranspiration increased in both the upper and lower basins, with the highest concentrations in the upper Ili River valley, Tianshan Mountains, and near the Ili River delta in the lower basin. Compared to the 2000s, the average annual evapotranspiration in the Ili River valley and Ili River delta increased by more than 10% in the 2010s. (3) Based on the Pearson correlation analysis, the upper and middle basins showed high positive correlations with temperature and NDVI, whereas the lower basin showed high positive correlations with soil moisture. (4) From 2000 to 2020, the basin's total water supply service decreased, with several shortfalls in the upper basin and shortfalls in the middle and lower basins beginning to appear in 2020. The balance of water supply and demand must be ensured by controlling the total amount of water being used and by improving water use efficiency.

Key words: Ili River-Balkhash Lake Basin, evapotranspiration, temporal and spatial changes, driving factors, Pearson correlation analysis.