干旱区研究 ›› 2025, Vol. 42 ›› Issue (10): 1860-1875.doi: 10.13866/j.azr.2025.10.10 cstr: 32277.14.AZR.20251010

• 植物生态 • 上一篇    下一篇

基于CMIP6气候变化下塔里木河流域天然植被生态需水预估

黄娩婷1,2(), 穆振侠1,2(), 杨荣钦1,2, 赵世康1,2, 李子龙1,2   

  1. 1.新疆农业大学水利与土木工程学院,新疆 乌鲁木齐 830052
    2.新疆水利工程安全与水灾害防治重点实验室,新疆 乌鲁木齐 830052
  • 收稿日期:2025-02-08 修回日期:2025-04-30 出版日期:2025-10-15 发布日期:2025-10-22
  • 通讯作者: 穆振侠. E-mail: xjmzx@xjau.edu.cn
  • 作者简介:黄娩婷(1995-),女,硕士研究生,主要从事水文水资源研究. E-mail: 320222324@xjau.edu.cn
  • 基金资助:
    新疆维吾尔自治区重点研发专项(2022B03024-4);国家自然科学基金项目(52269007);新疆水利工程安全与水灾害防治重点实验室实践创新项目(ZDSYS-YJS-2023-17)

Estimation of ecological water requirements for natural vegetation in the Tarim River Basin under climate change using CMIP6

HUANG Mianting1,2(), MU Zhenxia1,2(), YANG Rongqin1,2, ZHAO Shikang1,2, LI Zilong1,2   

  1. 1. College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2. Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, Xinjiang, China
  • Received:2025-02-08 Revised:2025-04-30 Published:2025-10-15 Online:2025-10-22

摘要:

为适应或减缓气候变化对陆地生态系统的影响,探究气候变化下的植被生态需水(Ecological Water Requirement of Vegetation,EWR)规律对维持陆地生态系统的稳定至关重要。本文基于CMIP6气候模式数据,以塔里木河流域为研究区,综合运用随机森林(RF)、极端梯度提升(XGBoost)、人工神经网络(ANN)和长短期记忆网络(LSTM)四种机器学习模型,结合气象要素与遥感因素,设计多种输入组合,深入分析了各模型在不同输入组合下对EWR预测的性能。在此基础上,筛选最优模型对未来EWR进行预测,并采用SHAP法量化了气象与遥感因素对EWR变化的贡献。结果显示:(1) 四种机器学习模型均适用于研究区EWR的评估,其中,XGBoost模型的综合性能最优。温度和净辐射是影响模型预测性能的主要气象因素,引入遥感要素后,模型性能得到了进一步提升。(2) 历史情景(historical)、中排放强迫情景(SSP2-4.5)和高排放强迫情景(SSP5-8.5)下的研究区平均EWR分别为498.58×108 m3,548.81×108 m3和570.28×108 m3,未来EWR整体呈上升趋势,其中,4月和5月为水需求增幅最显著的时期。(3) 空间上,三种情景下研究区EWR均呈北高南低的分布特征;但相较而言,SSP5-8.5情景下EWR变化更为显著,南北差异明显缩小。(4) EWR变化的主要影响因素为叶面积指数、净辐射和最低气温,其中,平原区EWR变化主要受叶面积指数影响,而山区EWR的变化则受叶面积指数、净辐射和最低气温的共同影响。

关键词: 生态需水, XGBoost, CMIP6, 机器学习, 塔里木河流域

Abstract:

To adapt to or mitigate the effects of climate change on the water resource demands of terrestrial ecosystems, it is crucial to determine the vegetation ecological water requirements (EWR) under changing climate conditions for maintaining the stability of terrestrial ecosystems. This study used CMIP6 climate model data and integrated the RF, XGBoost, ANN, and LSTM models along with meteorological and remote sensing factors to design various input combinations. Furthermore, an in-depth analysis of each model’s performance was performed under different input configurations for EWR prediction in the Tarim River Basin. Based on this analysis, the optimal model was selected to predict future EWR, and the SHAP method was applied to quantify the contributions of meteorological and remote sensing factors to EWR changes. The results were as follows: (1) All four machine learning models were suitable for evaluating EWR in the study area, with the XGBoost model demonstrating the best overall performance. Temperature and net radiation were the primary meteorological factors influencing the model’s predictions, and the incorporation of remote sensing factors further enhanced the model’s performance. (2) The average EWR under the historical, SSP2-4.5, and SSP5-8.5 scenarios was 498.58×108 m3, 548.81×108 m3, and 570.28×108 m3, respectively, showing an overall upward trend in future EWR. April and May were the periods with the most significant increases in water demand. (3) Spatially, the EWR in the study area under all three scenarios exhibited a distribution pattern of higher values in the north and lower values in the south. However, under the SSP5-8.5 scenario, the changes in EWR were more pronounced, and the north-south differences became significantly smaller. (4) The main factors influencing EWR changes were leaf area index, net radiation, and minimum temperature, with considerable impact of terrain variation. In plain areas, the leaf area index was the dominant factor driving EWR changes, whereas in mountainous regions, EWR was influenced by a combination of leaf area index, net radiation, and minimum temperature.

Key words: ecological water requirement, XGBoost, CMIP6, machine learning, Tarim River Basin