[1] |
Zhang K, Kimball J S, Running S W. A review of remote sensing based actual evapotranspiration estimation[J]. Wiley Interdisciplinary Reviews: Water, 2016, 3(6): 834-853.
|
[2] |
Yang X, Zhou Q, Melville M. Estimating local sugarcane evapotranspiration using Landsat TM image and a VITT concept[J]. International Journal of Remote Sensing, 1997, 18(2): 453-459.
|
[3] |
Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL)[J]. Journal of Hydrology, 1998, 212: 198-212.
|
[4] |
Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences, 2002, 6(1): 85-100.
|
[5] |
Nieto H, Kustas W P, Torres-Rúa A, et al. Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery[J]. Irrigation Science, 2019, 37: 389-406.
doi: 10.1007/s00271-018-0585-9
pmid: 32355404
|
[6] |
乔帅帅, 魏征, 张宝忠, 等. 基于DNDC模型的北京市大兴区冬小麦农业用水效率[J]. 排灌机械工程学报, 2018, 36(11): 1087-1091.
|
|
[Qiao Shuaishuai, Wei Zheng, Zhang Baozhong, et al. Water use efficiency of winter wheat based on DNDC model in Daxing District of Beijing[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2018, 36(11): 1087-1091. ]
|
[7] |
Timmermans W J, Kustas W P, Anderson M C, et al. An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes[J]. Remote Sensing of Environment, 2007, 108(4): 369-384.
|
[8] |
García-Santos V, Sánchez J M, Cuxart J. Evapotranspiration acquired with remote sensing thermal-based algorithms: A state-of-the-art review[J]. Remote Sensing, 2022, 14(14): 3440.
|
[9] |
张圆, 贾贞贞, 刘绍民, 等. 遥感估算地表蒸散发真实性检验研究进展[J]. 遥感学报, 2020, 24(8): 975-999.
|
|
[Zhang Yuan, Jia Zhenzhen, Liu Shaomin, et al. Advances in validation of remotely sensed land surface evapotranspiration[J]. Journal of Remote Sensing, 2020, 24(8): 975-999. ]
|
[10] |
Lu Y, Chibarabada T P, McCabe M F, et al. Global sensitivity analysis of crop yield and transpiration from the FAO-AquaCrop model for dryland environments[J]. Field Crops Research, 2021, 269: 108182.
|
[11] |
Ran H, Kang S, Hu X, et al. A framework to quantify uncertainty of crop model parameters and its application in arid Northwest China[J]. Agricultural and Forest Meteorology, 2022, 316: 108844.
|
[12] |
Zhou J, Cheng G, Li X, et al. Numerical modeling of wheat irrigation using coupled HYDRUS and WOFOST models[J]. Soil Science Society of America Journal, 2012, 76(2): 648-662.
|
[13] |
Dewenam L E F, Er-Raki S, Ezzahar J, et al. Performance evaluation of the WOFOST model for estimating evapotranspiration, soil water content, grain yield and total above-ground biomass of winter wheat in Tensift Al Haouz (Morocco): Application to yield gap estimation[J]. Agronomy, 2021, 11(12): 2480.
|
[14] |
De Wit A, Boogaard H, Fumagalli D, et al. 25 years of the WOFOST cropping systems model[J]. Agricultural Systems, 2019, 168: 154-167.
doi: 10.1016/j.agsy.2018.06.018
|
[15] |
Saltelli A, Tarantola S, Chan K P S. A quantitative model-independent method for global sensitivity analysis of model output[J]. Technometrics, 1999, 41(1): 39-56.
|
[16] |
DeJonge K C, Ascough II J C, Ahmadi M, et al. Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments[J]. Ecological Modelling, 2012, 231: 113-125.
|
[17] |
De Wit A, Boogaard H L, Supit I, et al. System Description of the WOFOST 7.2, Cropping Systems Model[R]. Wageningen Environmental Research, 2020.
|
[18] |
Arthur D, Vassilvitskii S. K-means++: The Advantages of Careful Seeding[R]. Stanford Theory Group, 2006.
|
[19] |
熊博文, 李桐, 黄樱, 等. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393.
doi: 10.17521/cjpe.2021.0219
|
|
[Xiong Bowen, Li Tong, Huang Ying, et al. Effects of different reference temperature values on the accuracy of vegetation transpiration estimation by three-temperature model[J]. Chinese Journal of Plant Ecology, 2022, 46(4): 383-393. ]
doi: 10.17521/cjpe.2021.0219
|
[20] |
Hatfield J L, Reginato R J, Idso S B. Comparison of long-wave radiation calculation methods over the United States[J]. Water Resources Research, 1983, 19(1): 285-288.
|
[21] |
Jackson R D, Hatfield J L, Reginato R J, et al. Estimation of daily evapotranspiration from one time-of-day measurements[J]. Agricultural Water Management, 1983, 7(1-3): 351-362.
|
[22] |
Meeus J H. Astronomical algorithms[M]. Willmann-Bell, Incorporated, 1991.
|
[23] |
Menenti M, Azzali S, Verhoef W, et al. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images[J]. Advances in Space Research, 1993, 13(5): 233-237.
|
[24] |
Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900.
|
[25] |
Zhou J, Jia L, Menenti M. Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS)[J]. Remote Sensing of Environment, 2015, 163: 217-228.
|
[26] |
Saltelli A. Global Sensitivity Analysis: The Primer[M]. New York: John Wiley & Sons, 2008.
|
[27] |
Zhu X, Xu K, Liu Y, et al. Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model[J]. Agricultural Systems, 2021, 189: 103040.
|
[28] |
LaVenue A M, Pickens J F. Application of a coupled adjoint sensitivity and kriging approach to calibrate a groundwater flow model[J]. Water Resources Research, 1992, 28(6): 1543-1569.
|
[29] |
Käbe C, Maruhn J H, Sachs E W. Adjoint-based Monte Carlo calibration of financial market models[J]. Finance and Stochastics, 2009, 13: 351-379.
|
[30] |
Clare M C A, Kramer S C, Cotter C J, et al. Calibration, inversion and sensitivity analysis for hydro-morphodynamic models through the application of adjoint methods[J]. Computers & Geosciences, 2022, 163: 105104.
|
[31] |
Keane R, Gao H O. Fast calibration of car-following models to trajectory data using the adjoint method[J]. Transportation Science, 2021, 55(3): 592-615.
|
[32] |
Jiang L, Zhang B, Han S, et al. Upscaling evapotranspiration from the instantaneous to the daily time scale: Assessing six methods including an optimized coefficient based on worldwide eddy covariance flux network[J]. Journal of Hydrology, 2021, 596: 126135.
|
[33] |
Kumar U, Srivastava A, Kumari N, et al. Evaluation of spatio-temporal evapotranspiration using satellite-based approach and lysimeter in the agriculture dominated catchment[J]. Journal of the Indian Society of Remote Sensing, 2021, 49: 1939-1950.
|