干旱区研究 ›› 2024, Vol. 41 ›› Issue (3): 399-410.doi: 10.13866/j.azr.2024.03.05 cstr: 32277.14.j.azr.2024.03.05
李晗薇1(), 姚俊强2(), 容韬1, 张天洋1, 高雅洁1
收稿日期:
2023-10-20
修回日期:
2023-12-16
出版日期:
2024-03-15
发布日期:
2024-04-01
通讯作者:
姚俊强. E-mail: yaojq1987@126.com作者简介:
李晗薇(1998-),女,助理工程师,主要从事同位素水文研究. E-mail: hanweili1998@163.com
基金资助:
LI Hanwei1(), YAO Junqiang2(), RONG Tao1, ZHANG Tianyang1, GAO Yajie1
Received:
2023-10-20
Revised:
2023-12-16
Published:
2024-03-15
Online:
2024-04-01
摘要:
利用塔什库尔干河流域河谷2018年9月—2020年5月的降水事件的大气降水同位素数据,以及流域河谷代表性气象站点温度、降水、相对湿度等气象资料,分析降水中δ18O、δ2H和氘盈余(d-excess)变化特征,探讨影响因素,并基于拉格朗日后向轨迹模型(HYSPLIT)追踪解析流域河谷大气降水的水汽输送路径。结果表明:(1) 降水δ2H、δ18O值总体上呈现夏季富集、冬季贫化的季节变化特征,且具有显著的温度效应(1.33‰·℃-1),但未见显著雨量效应;(2) 局地大气降水线方程为δ2H=7.63δ18O-3.55,呈现出显著的干旱气候特征;(3) HYSPLIT模拟结果表明研究流域降水水汽主要受西风环流和局地水汽再循环影响,其中夏半年局地水汽蒸发占比54.09%,冬半年西方路径中较长距离输送占比45.53%。8月源自印度洋的水汽可绕过青藏高原到达研究区域。成果可为塔什库尔干河流域水资源管理和气候应对提供参考依据。
李晗薇, 姚俊强, 容韬, 张天洋, 高雅洁. 塔什库尔干河流域河谷大气降水同位素特征与水汽输送路径[J]. 干旱区研究, 2024, 41(3): 399-410.
LI Hanwei, YAO Junqiang, RONG Tao, ZHANG Tianyang, GAO Yajie. Characteristics of atmospheric precipitation isotope and path analysis of water vapor transport in the Taxkorgan River Basin Valley[J]. Arid Zone Research, 2024, 41(3): 399-410.
表1
研究区次降水事件氢氧稳定同位素组成统计结果"
时间(样品数/个) | 同位素类型 | 最小值/‰ | 最大值/‰ | 加权均值/‰ | 算数均值/‰ | 标准偏差 |
---|---|---|---|---|---|---|
夏半年(34) | δ2H | -231.45 | -0.19 | -80.01 | -70.93 | 66.78 |
δ18O | -28.80 | 0.80 | -10.36 | -8.87 | 8.97 | |
d-excess | -26.98 | 18.03 | 2.90 | 0.04 | 10.85 | |
冬半年(14) | δ2H | -255.71 | -8.28 | -155.57 | -144.64 | 80.19 |
δ18O | -33.44 | -3.23 | -20.34 | -18.99 | 10.05 | |
d-excess | -20.30 | 26.50 | 7.11 | 7.24 | 13.46 | |
全年(48) | δ2H | -255.71 | -0.19 | -109.07 | -92.43 | 78.47 |
δ18O | -33.44 | 0.80 | -14.20 | -11.82 | 10.37 | |
d-excess | -26.98 | 26.50 | 4.52 | 2.14 | 12.12 |
[1] | 程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40(1): 1-11. |
[Cheng Guodong, Jin Huijun. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology & Engineering Geology, 2013, 40(1): 1-11.] | |
[2] | 张茜. 帕米尔高原1979—2018年降水时空分布特征分析[D]. 西安: 陕西师范大学, 2021. |
[Zhang Qian. Characterization of Spatial and Temporal Distribution of Precipitation on the Pamir Plateau, 1979-2018[D]. Xi’an: Shaanxi Normal University, 2021.] | |
[3] |
Li Z X, Gui J, Wang X F, et al. Water resources in inland regions of central Asia: Evidence from stable isotope tracing[J]. Journal of Hydrology, 2019, 570(1): 1-16.
doi: 10.1016/j.jhydrol.2019.01.003 |
[4] | 曾磊, 杨太保, 田洪阵. 近40年东帕米尔高原冰川变化及其对气候的响应[J]. 干旱区资源与环境, 2013, 27(5): 144-150. |
[Zeng Lei, Yang Taibao, Tian Hongzhen. Response of glacier variations in the eastern Pamirs Plateau to climate change, during the last 40 years[J]. Journal of Arid Land Resources and Environment, 2013, 27(5): 144-150.] | |
[5] | 陈亚宁. 中国西北干旱区水资源研究[M]. 北京: 科学出版社, 2014. |
[Cheng Yaning. Water Resources Research in the Arid Zone of Northwest China[M]. Beijing: Science Press, 2014.] | |
[6] | Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. |
[7] | 章新平, 姚檀栋. 我国降水中δ18O的分布特点[J]. 地理学报, 1998, 53(4): 70-78. |
[Zhang Xinping, Yao Tandong. Distributional features of δ18O in precipitation in China[J]. Acta Geographica Sinica, 1998, 53(4): 70-78.] | |
[8] | 章新平, 刘晶淼, 孙维贞. 等. 中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究[J]. 中国科学: 地球科学, 2006, 36(9): 850-859. |
[Zhang Xinping, Liu Jingmiao, Sun Weizhen, et al. Relationship between oxygen stable isotope ratios in precipitation and related meteorological elements in China[J]. Scientia Sinica (Terrae), 2006, 36(9): 850-859.] | |
[9] | 曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869. |
[Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review[J]. Arid Zone Research, 2020, 37(4): 857-869.] | |
[10] | 王圣杰, 张明军. 新疆天山降水稳定同位素的时空特征与影响因素[J]. 第四纪研究, 2017, 37(5): 1119-1130. |
[Wang Shengjie, Zhang Mingjun. Spatio-temporal characteristics and influencing factors of stable isotopes in precipitation across the Chinese Tianshan Mountains[J]. Quaternary Sciences, 2017, 37(5): 1119-1130.] | |
[11] | Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Reviews, 1996, 24(1): 225-262. |
[12] | Gibson J J, Edwards T W D. Regional water balance trends and evaporation-transpiration partitioning from a stable isotope survey of lakes in northern Canada[J]. Global Biogeochemical Cycles, 2002, 16(2): 101-109. |
[13] | 姚檀栋, 周行, 杨晓新. 印度季风水汽对青藏高原降水和河水中δ18O高程递减率的影响[J]. 科学通报, 2009, 54(15): 2124-2130. |
[Yao Tandong, Zhou Xing, Yang Xiaoxin. Influence of Indian monsoon water vapor on precipitation and δ18O elevation decrement rates in river water on the Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54(15): 2124-2130.] | |
[14] |
Wu J, Ding Y, Ye B, et al. Spatio-temporal variation of stable isotopes in precipitation in the Heihe River Basin, Northwestern China[J]. Environmental Earth Sciences, 2010, 61(6): 1123-1134.
doi: 10.1007/s12665-009-0432-7 |
[15] | Pang H. lnfluence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas[J]. The Cryosphere Discussions, 2013, 7(3): 1871-1905. |
[16] | 饶文波, 李垚炜, 谭红兵, 等. 高寒干旱区降水氢氧稳定同位素组成及其水汽来源: 以昆仑山北坡格尔木河流域为例[J]. 水利学报, 2021, 52(9): 1116-1125. |
[Rao Wenbo, Li Yaowei, Tan Hongbing, et al. Stable hydrogen-oxygen isotope composition and atmospheric moisture sources of precipitation in an arid-alpine region: A case study of the Golmud River Watershed on the north slope of the Kunlun Mountains[J]. Journal of Hydraulic Engineering, 2021, 52(9): 1116-1125.] | |
[17] | 王君, 时坤, Philip Riordan. 新疆塔什库尔干有蹄类动物种群密度研究[J]. 山西林业科技, 2012, 41(2): 1-4. |
[Wang Jun, Shi Kun, Philip Riordan. Study on population density of ungulates in Taxkorgan, Xinjiang, China[J]. Shanxi Forestry Science and Technology, 2012, 41(2): 1-4.] | |
[18] | 阿布力米提·阿布都卡迪尔, 戴志刚, 史军, 等. 新疆塔什库尔干高山-高原区盘羊和北山羊冬季资源调查报告[J]. 干旱区资源与环境, 2010, 24(11): 174-179. |
[Ablimit Abdukadir, Dai Zhigang, Shi Jun, et al. Investigation of pulation resources of Argali and Ibex on the higher-mountains in Xinjiang Taxkorgan in winter[J]. Journal of Arid Land Resources and Environment, 2010, 24(11): 174-179.] | |
[19] | 王君. 新疆塔什库尔干地区雪豹生态位研究及种群估算[D]. 北京: 北京林业大学, 2012. |
[Wang Jun. Ecological Niche Study and PopuLation Estimation of Snow Leopards in the Tashkurgan Region of Xinjiang, China[D]. Beijing: Beijing Forestry University, 2012.] | |
[20] | 张炎炎, 辛存林, 郭小燕, 等. 西北内陆区降水稳定同位素时空分布特征及其水汽来源[J/OL]. 环境科学, 2023: 1-25. |
[Zhang Yanyan, Xin Cunlin, Guo Xiaoyan, et al. Characteristics of Stable lsotopes in Precipitation and lts Moisture Sources in the Inland Regions of Northwest China[J/OL]. Environmental Science, 2023: 1-25.] | |
[21] |
Wang Y Q, Zhang X Y, Draxler R R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J]. Environmental Modelling and Software, 2009, 24(8): 938-939.
doi: 10.1016/j.envsoft.2009.01.004 |
[22] | Draxler R R, Hess G D. An overview of the HYSPLIT4 modelling system for trajectories[J]. Australian Meteorological Magazine, 1998, 47(4): 295-308. |
[23] | 宋洋, 王圣杰, 张明军, 等. 塔里木河流域东部降水稳定同位素特征与水汽来源[J]. 环境科学, 2022, 43(1): 199-209. |
[Song Yang, Wang Shengjie, Zhang Mingjun, et al. Stable isotopes of precipitation in the eastern Tarim River basin and water vapor sources[J]. Environmental Science, 2022, 43(1): 199-209.] | |
[24] |
Trenberth K E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change[J]. Climatic Change, 1998, 39(4): 667-694.
doi: 10.1023/A:1005319109110 |
[25] |
Gat J R. Atmospheric water balance-the isotopic perspective[J]. Hydrological Processes, 2000, 14(8): 1357-1369.
doi: 10.1002/(ISSN)1099-1085 |
[26] |
Wang S J, Zhang M J, Crawford J, et al. The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(5): 2667-2682.
doi: 10.1002/jgrd.v122.5 |
[27] | 张海发, 郑芳文, 杨海全. 南昌市大气降水H-O稳定同位素特征及其水汽来源解析[J]. 地球与环境, 2023, 51(2): 133-142. |
[Zhang Haifa, Zheng Fangwen, Yang Haiquan. The stable H-O isotope characteristic of atmospheric precipitation and the moisture source tracing in Nanchang City[J]. Earth and Environment, 2023, 51(2): 133-142.] | |
[28] | 章新平, 孙维贞, 刘晶淼. 西南水汽通道上昆明站降水中的稳定同位素[J]. 长江流域资源与环境, 2005, 14(5): 665-669. |
[Zhang Xinpin, Sun Weizhen, Liu Jingmiao. Stable isotopes in precipitation in the vapor transport path in Kunming of Southwest China[J]. Resources and Environment in the Yangtze Basin, 2005, 14(5): 665-669.] | |
[29] |
Xie L, Wei G, Deng W, et al. Daily δ18O and δD of precipitations from 2007 to 2009 in Guangzhou, South China: Implications for changes of moisture sources[J]. Journal of Hydrology, 2011, 400(3-4): 477-489.
doi: 10.1016/j.jhydrol.2011.02.002 |
[30] | 卫克勤, 林瑞芬. 论季风气候对我国雨水同位素组成的影响[J]. 地球化学, 1994, 23(1): 33-41. |
[Wei Keqin, Lin Ruifen. The influence of the monsoon climate on the isotopic composition of precipitation in China[J]. Geochimica, 1994, 23(1): 33-41.] | |
[31] | 顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011. |
[Gu Weizu. Isotope Hydrology[M]. Beijing: Science Press, 2011.] | |
[32] | Welp L R, Lee X, Griffis T J, et al. A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer[J]. Global Biogeochemical Cycles, 2012, 26(3): 1-12. |
[33] | 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13): 801-806. |
[Zheng Shuhui, Hou Fagao, Ni Baoling. Hydrogen and oxygen stable isotope studies of atmospheric precipitation in China[J]. Chinese Science Bulletin, 1983(13): 801-806.] | |
[34] | 李永格, 李宗省, 冯起, 等. 托来河流域不同海拔降水稳定同位素的环境意义[J]. 环境科学, 2018, 39(6): 2661-2672. |
[Li Yongge, Li Zongxing, Feng Qi, et al. Environmental significance of the stable isotopes in precipitation at different altitudes in the Tuolai River Basin[J]. Environmental Science, 2018, 39(6): 2661-2672.] | |
[35] | 袁瑞丰, 李宗省, 蔡玉琴, 等. 干旱内陆河流域降水稳定同位素的时空特征及环境意义[J]. 环境科学, 2019, 40(5): 2122-2131. |
[Yuan Ruifeng, Li Zongxing, Cai Yuqin, et al. Space-time characteristics and environmental significance of stable isotopes in precipitation at an arid inland river basin[J]. Environmental Science, 2019, 40(5): 2122-2131.] | |
[36] |
Yao T D, Masson V, Jouzel J, et al. Relationships between δ18O in precipitation and surface air temperature in the Urumiqi River Basin, east Tianshan Mountains, China[J]. Geophysical Research Letters, 1999, 26(23): 3473-3476.
doi: 10.1029/1999GL006061 |
[37] | 吴锦奎, 杨淇越, 丁永建, 等. 黑河流域大气降水稳定同位素变化及模拟[J]. 环境科学, 2011, 32(7): 1857-1866. |
[Wu Jinkui, Yang Qiyue, Ding Yongjian, et al. Variations and simulation of stable isotopes in precipitation in the Heihe River basin[J]. Environmental Science, 2011, 32(7): 1857-1866.] | |
[38] | 朱建佳, 陈辉, 巩国丽. 柴达木盆地东部降水氢氧同位素特征与水汽来源[J]. 环境科学, 2015, 36(8): 2784-2790. |
[Zhu Jianjia, Chen Hui, Gong Guoli. Hydrogen and oxygen isotopic compositions of precipitation and its water vapor sources in eastern Qaidam Basin[J]. Environmental Science, 2015, 36(8): 2784-2790.] | |
[39] | Yu W S, Tian L D, Risi C, et al. δ18O records in water vapor and an ice core from the eastern Pamir Plateau: Implications for paleoclimate reconstructions[J]. Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System, 2016, 10(456): 146-156. |
[40] | 郑新军, 戴岳, 周海, 等. 准噶尔盆地东南部降水中δ18O的温度与降水量效应[J]. 干旱区研究, 2016, 33(4): 732-738. |
[Zhen Xinjun, Dai Yue, Zhou Hai, et al. Effect of temperature and precipitation on δ18O in precipitation water in the southeastern Junggar Basin, China[J]. Arid Zone Research, 2016, 33(4): 732-738.] | |
[41] |
Cui B L, Li X Y. Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau[J]. Science of the Total Environment, 2015, 527-528(9): 26-37.
doi: 10.1016/j.scitotenv.2015.04.105 |
[42] |
Pang Z H, Kong Y L, Froehlich K, et al. Processes affecting isotopes in precipitation of an arid region[J]. Tellus Series B-Chemical and Physical Meteorology, 2011, 63(3): 352-359.
doi: 10.1111/j.1600-0889.2011.00532.x |
[43] |
Froehlich K, Kralik M, Papesch W, et al. Deuterium excess in precipitation of Alpine regions-moisture recycling[J]. Isotopes in Environmental and Health Studies, 2008, 44(1): 61-70.
doi: 10.1080/10256010801887208 pmid: 18320428 |
[44] | 孙从建, 张子宇, 陈伟, 等. 亚洲中部高山降水稳定同位素空间分布特征[J]. 干旱区研究, 2019, 36(1): 19-28. |
[Sun Congjian, Zhang Ziyu, Chen Wei, et al. Spatial distribution of precipitation stable isotopes in the Alpine Zones in Central Asia[J]. Arid Zone Research, 2019, 36(1): 19-28.] | |
[45] | 赵玮. 疏勒河流域大气降水同位素特征及水汽来源研究[D]. 兰州: 兰州大学, 2017, 12. |
[Zhao Wei. Study on the Isotopes and Moisture Source in Precipitation in the Shule River Basin[D]. Lanzhou: Lanzhou University, 2017, 12.] |
[1] | 吴佳康, 陈丽花, 车彦军, 张明军, 曹昀, 谷来磊. 东昆仑木孜塔格峰地区水汽来源分析[J]. 干旱区研究, 2024, 41(2): 211-219. |
[2] | 王娜娜,韩磊,柳利利,彭苓,周鹏,马云蕾,马军. 银川平原夏半年不同等级降雨水汽输送机制[J]. 干旱区研究, 2023, 40(9): 1404-1413. |
[3] | 庄淏然, 冯克鹏, 许德浩. 蒸散分离的玉米水分利用效率变化及影响因素[J]. 干旱区研究, 2023, 40(7): 1117-1130. |
[4] | 李红梅, 巴贺贾依娜尔·铁木尔别克, 常顺利, 古丽哈娜提·波拉提别克, 张毓涛, 李吉枚. MixSIAR和IsoSource模型对比分析天山北坡不同灌木的夏季水分来源[J]. 干旱区研究, 2023, 40(3): 445-455. |
[5] | 蒋磊,赵毅,张鹏伟,何亮,摆翔. 基于氢氧稳定同位素特征的潜水蒸发影响程度研究[J]. 干旱区研究, 2022, 39(6): 1793-1800. |
[6] | 何启欣,曹广超,曹生奎,程梦园,刁二龙,高斯远,邱巡巡,赵美亮,程国. 香日德-柴达木河流域水体氢氧稳定同位素特征及影响因素研究[J]. 干旱区研究, 2022, 39(3): 820-828. |
[7] | 王建,韩海东,许君利,颜伟. 天山科其喀尔冰川末端降水化学特征及控制因素[J]. 干旱区研究, 2022, 39(2): 347-358. |
[8] | 雷世军,王圣杰,朱小凡,张明军. 基于蒸发皿实验的大气水汽氢氧稳定同位素模拟[J]. 干旱区研究, 2022, 39(1): 21-29. |
[9] | 曾康康,杨余辉,胡义成,冯先成. 喀什河流域降水同位素特征及水汽来源分析[J]. 干旱区研究, 2021, 38(5): 1263-1273. |
[10] | 郭鑫,李文宝,孙标. 氢氧稳定同位素对达里湖水体蒸发与补给来源的指示作用[J]. 干旱区研究, 2021, 38(4): 930-938. |
[11] | 王晓艳,蒋缠文. 东天山哈密榆树沟流域夏季降水的化学特征研究[J]. 干旱区研究, 2018, 35(2): 277-286. |
[12] | 张清寰, 齐识, 马金珠. 甘肃梨园河流域地下水来源及其水化学特征[J]. 干旱区研究, 2012, 29(5): 898-906. |
|