[1] |
Ding J, Eldridge D J. Community-level responses to increasing dryness vary with plant growth form across an extensive aridity gradient[J]. Journal of Biogeography, 2021, 48(7): 1788-1796.
doi: 10.1111/jbi.v48.7
|
[2] |
Hirata A, Kominami Y, Ohashi H, et al. Global estimates of stress-reflecting indices reveal key climatic drivers of climate-induced forest range shifts[J]. Science of The Total Environment, 2022, 824: 153697.
doi: 10.1016/j.scitotenv.2022.153697
|
[3] |
Brodribb T J, Cochard H. Hydraulic failure defines the recovery and point of death in water-stressed conifers[J]. Plant Physiology, 2009, 149(1): 575-584.
doi: 10.1104/pp.108.129783
pmid: 19011001
|
[4] |
Nicol J M, Ganf G G, Pelton G A. Seed banks of a southern Australian wetland: The influence of water regime on the final floristic composition[J]. Plant Ecology, 2003, 168(2): 191-205.
doi: 10.1023/A:1024430919811
|
[5] |
Huang J, Ma J, Guan X, et al. Progress in semi-arid climate change studies in China[J]. Advances in Atmospheric Sciences, 2019, 36(9): 922-937.
doi: 10.1007/s00376-018-8200-9
|
[6] |
Christoffersen B, Meir P, McDowell N G. Linking plant hydraulics and beta diversity in tropical forests[J]. New Phytologist, 2017, 215(1): 12-14.
doi: 10.1111/nph.14601
pmid: 28560791
|
[7] |
Tokeshi M. Species abundance patterns and community structure[J]. Advances in Ecological Research, 1993, 24: 111-186.
|
[8] |
van Mantgem P J, Stephenson N L, Byrne J C, et al. Widespread increase of tree mortality rates in the western United States[J]. Science, 2009, 323(5913): 521-524.
doi: 10.1126/science.1165000
pmid: 19164752
|
[9] |
Zhang X N, Yang X D, Li Y, et al. Influence of edaphic factors on plant distribution and diversity in the arid area of Xinjiang, Northwest China[J]. Arid Land Research and Management, 2018, 32(1): 38-56.
doi: 10.1080/15324982.2017.1376004
|
[10] |
Lou Y, Kapfer J, Smith P, et al. Abundance changes of marsh plant species over 40 years are better explained by niche position water level than functional traits[J]. Ecological Indicators, 2020, 117: 106639.
doi: 10.1016/j.ecolind.2020.106639
|
[11] |
张丽, 董增川, 黄晓玲, 等. 干旱区典型植物生长与地下水位关系的模型研究[J]. 中国沙漠, 2004, 24(1): 110-113.
|
|
[Zhang Li, Dong Zengchuan, Huang Xiaoling, et al. Modeling on relation between major plants growth and groundwater depth in arid area[J]. Journal of Desert Research, 2004, 24(1): 110-113.]
|
[12] |
杨晓东, 龚雪伟, 朱丽安, 等. 胡杨(Populus euphratica)水分再分配与其伴生种多样性和生态位的关系[J]. 中国沙漠, 2017, 37(5): 933-941.
|
|
[Yang Xiaodong, Gong Xuewei, Zhu Li’an, et al. Relationships among Populus euphratica hydraulic redistribution, niche breadth and biodiversity of its companion species in tugai forests[J]. Journal of Desert Research, 2017, 37(5): 933-941.]
|
[13] |
McGeoch M A, Latombe G. Characterizing common and range expanding species[J]. Journal of Biogeography, 2016, 43(2): 217-228.
doi: 10.1111/jbi.12642
|
[14] |
Villagra M, Campanello P I, Bucci S J, et al. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species[J]. Tree Physiology, 2013, 33(12): 1308-1318.
doi: 10.1093/treephys/tpt098
pmid: 24284866
|
[15] |
Brodribb T J, Feild T S, Sack L. Viewing leaf structure and evolution from a hydraulic perspective[J]. Functional Plant Biology, 2010, 37(6): FP10010.
|
[16] |
Garnier E. Plant functional markers capture ecosystem properties during secondary succession[J]. Ecology, 2004, 85: 2630-2637.
doi: 10.1890/03-0799
|
[17] |
周洪华, 李卫红. 荒漠河岸林植物木质部导水与栓塞特征及其对干旱胁迫的响应[J]. 植物生态学报, 2012, 36(1): 19-29.
doi: 10.3724/SP.J.1258.2012.00019
|
|
[Zhou Honghua, Li Weihong. Xylem hydraulic conductivity and embolism properties of desert riparian forest plants and its response to drought stress[J]. Chinese Journal of Plant Ecology, 2012, 36(1): 19-29.]
doi: 10.3724/SP.J.1258.2012.00019
|
[18] |
Li L, McCormack M L, Ma C, et al. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J]. Ecology Letters, 2015, 18: 899-906.
doi: 10.1111/ele.12466
pmid: 26108338
|
[19] |
周洁, 杨晓东, 王雅芸, 等. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076.
doi: 10.17521/cjpe.2021.0338
|
|
[Zhou Jie, Yang Xiaodong, Wang Yayun, et al. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought[J]. Chinese Journal of Plant Ecology, 2022, 46(9): 1064-1076.]
doi: 10.17521/cjpe.2021.0338
|
[20] |
Yang X D, Zhang X N, LÜ G H, et al. Linking Populus euphratica hydraulic redistribution to diversity assembly in the arid desert zone of Xinjiang, China[J]. PLoS One, 2014, 9(10): e109071.
doi: 10.1371/journal.pone.0109071
|
[21] |
Hubbell S P. Tree dispersion, abundance, and diversity in a tropical dry forest: That tropical trees are clumped, not spaced, alters conceptions of the organization and dynamics[J]. Science, 1979, 203(4387): 1299-1309.
pmid: 17780463
|
[22] |
彭兰, 周晓兵, 陶冶, 等. 干旱对梭梭水力性状及生理生化特性的影响[J]. 生态学杂志, 2023, 42(2): 257-265.
|
|
[Peng Lan, Zhou Xiaobing, Tao Ye, et al. Effects of drought on the hydraulic traits and physio-biochemical characteristics of Haloxylon ammodendron[J]. Chinese Journal of Ecology, 2023, 42(2): 257-265.]
|
[23] |
Rutter A J, Slatyer R O. Plant-water relationships[J]. The Journal of Applied Ecology, 1968, 5(1): 261.
doi: 10.2307/2401293
|
[24] |
Meixner M, Foerst P, Windt C W. Reduced spatial resolution MRI suffices to image and quantify drought induced embolism formation in trees[J]. Plant Methods, 2021, 17(1): 38.
doi: 10.1186/s13007-021-00732-7
pmid: 33823898
|
[25] |
Magnani F, Grace J, Borghetti M. Adjustment of tree structure in response to the environment under hydraulic constraints: Structural adjustment under hydraulic constraints[J]. Functional Ecology, 2002, 16: 385-393.
doi: 10.1046/j.1365-2435.2002.00630.x
|
[26] |
陈丽茹, 李秧秧. 沙柳和柠条茎水力学特性对模拟降雨改变的响应[J]. 应用生态学报, 2018, 29(2): 507-514.
doi: 10.13287/j.1001-9332.201802.017
|
|
[Chen Liru, Li Yangyang. Responses of stem hydraulic traits in Salix psammophila and Caragana korshinskii to manipulated precipitation variation[J]. Chinese Journal of Applied Ecology, 2018, 29(2): 507-514.]
doi: 10.13287/j.1001-9332.201802.017
|
[27] |
Hukin D, Cochard H, Dreyer E, et al. Cavitation vulnerability in roots and shoots: Does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species?[J]. Journal of Experimental Botany, 2005, 56(418): 2003-2010.
doi: 10.1093/jxb/eri198
pmid: 15967780
|
[28] |
徐梦琦, 高艳菊, 张志浩, 等. 骆驼刺叶片和根系主要功能性状对水分胁迫的适应[J]. 草业科学, 2021, 38: 1559-1569.
|
|
[Xu Mengqi, Gao Yanju, Zhang Zhihao, et al. Adaptation of the main functional trait of Alhagi sparsifolia leaves and roots to soil water stress[J]. Pratacultural Science, 2021, 38: 1559-1569.]
|
[29] |
Chimner R A, Cooper D J. Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado U. S. A.[J]. Plant and Soil, 2004, 260(1-2): 225-236.
doi: 10.1023/B:PLSO.0000030190.70085.e9
|
[30] |
He D, Yan E R. Size-dependent variations in individual traits and trait scaling relationships within a shade-tolerant evergreen tree species[J]. American Journal of Botany, 2018, 105(7): 1165-1174.
doi: 10.1002/ajb2.2018.105.issue-7
|
[31] |
Carter J L, White D A. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth[J]. Tree Physiology, 2009, 29(11): 1407-1418.
doi: 10.1093/treephys/tpp076
pmid: 19797243
|
[32] |
Anderegg W R L. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation[J]. New Phytologist, 2015, 205: 1008-1014.
pmid: 25729797
|
[33] |
Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum[J]. Ecology Letters, 2009, 12(4): 351-366.
doi: 10.1111/j.1461-0248.2009.01285.x
pmid: 19243406
|
[34] |
Sevanto S, Mcdowell N G, Dickman L T, et al. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses[J]. Plant, Cell & Environment, 2014, 37(1): 153-161.
|
[35] |
杨晓东, 吕光辉, 王银山, 等. 艾比湖湿地自然保护区盐生植物的水分利用效率[J]. 生态学杂志, 2010, 29(12): 2341-2346.
|
|
[Yang Xiaodong, LÜ Guanghui, Wang Yinshan, et al. Water use efficiency of halophytes in Ebinur Lake Wetland Nature Reserve of Xinjiang[J]. Chinese Journal Ecology, 2010, 29(12): 2341-2346.]
|
[36] |
McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?[J]. New Phytologist, 2008, 178(4): 719-739.
doi: 10.1111/j.1469-8137.2008.02436.x
pmid: 18422905
|