[1] |
Saleem M H, Ali S, Rehman M, et al. Jute: A potential candidate for phytoremediation of metals-A review[J]. Plants, 2020, 9(2): 258.
doi: 10.3390/plants9020258
|
[2] |
席艳丽, 蔡进军, 刘统高, 等. 华北驼绒藜和四翅滨藜对干旱胁迫的生理反应[J]. 西北农业学报, 2017, 26(5): 790-796.
|
|
[Xi Yanli, Cai Jinjun, Liu Tonggao, et al. Physiological resonses of Ceratoides arborescens and Atriplex canescens to drought stress[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(5): 790-796. ]
|
[3] |
徐梦琦, 高艳菊, 张志浩, 等. 干旱胁迫对疏叶骆驼刺幼苗生长和生理的影响[J]. 干旱区研究, 2023, 40(2): 257-267.
|
|
[Xu Mengqi, Gao Yanju, Zhang Zhihao, et al. Effects of drought stress on growth and physiology of Alhagi sparsifolia seedlings[J]. Arid Zone Research, 2023, 40(2): 257-267. ]
|
[4] |
李嘉珞, 郭米山, 高广磊, 等. 沙地樟子松菌根化幼苗对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1704-1712.
|
|
[Li Jialuo, Guo Mishan, Gao Guanglei, et al. Physiological responses of mycorrhizal seedlings of Pinus sylvestris var. mongolica to drought stress[J]. Arid Zone Research, 2021, 38(6): 1704-1712. ]
|
[5] |
Kaur K, Kaur N, Gupta A K, et al. Exploration of the antioxi-dative defense system to characterize chickpea genotypes showing differential response towards water deficit conditions[J]. Plant Growth Regul, 2013, 70(1): 49-60.
doi: 10.1007/s10725-012-9777-0
|
[6] |
Hussain H A, Hussain S, Khallq A, et al. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities[J]. Frontiers in Plant Science, 2018, 9: 393.
doi: 10.3389/fpls.2018.00393
pmid: 29692787
|
[7] |
Xu J Q, Jin J J, Zhao H, et al. Drought stress tolerance analysis of Populus ussuriensis clones with different ploidies[J]. Journal of Forestry Research, 2019, 30(4): 1267-1275.
doi: 10.1007/s11676-018-0729-z
|
[8] |
胡杨, 李钢铁, 李星, 等. 干旱胁迫对细穗柽柳幼苗生长和生理生化指标的影响[J]. 中国农业科技导报, 2021, 23(6): 43-50.
|
|
[Hu Yang, Li Gangtie, Li Xing, et al. Growth and physiological index of Tamarix Ieptostachys Bunge seedlings under soil drought stress[J]. Journal of Agricultural Science and Technology, 2021, 23(6): 43-50. ]
|
[9] |
Benzarti M, Rejeb K B, Debez A. et al. Environmental and economical opportunities for the valorisation of the genus Atriplex: New insights[J]. Plant Physiol and Biochemestry, 2013, 42: 833-840.
|
[10] |
Zhang Z K, Liu H, Liu X, et al. Organic fertilizer enhances rice growth in severe saline-alkali soil by increasing soil bacterial diversity[J]. Soil Use Management, 2021, 38(1): 964-977.
doi: 10.1111/sum.v38.1
|
[11] |
Guerrero-Cervantes M, Ramirez R G, Gonzalez-Rodriguez H. et al. Mineral content in range forages from North Mexico[J]. Journal of Applied Animal Research, 2012, 40(2): 102-107.
doi: 10.1080/09712119.2011.607907
|
[12] |
尹林克. 中亚荒漠生态系统中的关键种──柽柳(Tamarix spp.)[J]. 干旱区研究, 1995, 12(3): 43-47.
|
|
[Yin Linke. Tamarix spp. ──The keyston spiecies of desert ecosystem[J]. Arid Zone Research, 1995, 12(3): 43-47. ]
|
[13] |
刘雨桐, 贡璐, 刘曾媛. 塔里木盆地南缘典型绿洲不同土壤类型土壤有机碳含量及矿化特征[J]. 干旱区资源与环境, 2017, 31(2): 162-166.
|
|
[Liu Yutong, Gong Lu, Liu Zengyuan. Organic carbon and carbon mineralization characteristics under different soil types in the southern edge of Tarim Basin[J]. Journal of Arid land Resources and Environment, 2017, 31(2): 162-166. ]
|
[14] |
代云豪, 管瑶, 刘孟琴, 等. 1990—2020年阿拉尔垦区生态环境质量动态监测与评价[J]. 水土保持通报, 2022, 42(2): 122-128.
|
|
[Dai Yunhao, Guan Yao, Liu Mengqin, et al. Dynamic monitoring and evaluation of ecological environment quality in Alar Reclamation Area from 1990 to 2020[J]. Bulletin of Soil and Water Conservation, 2022, 42(2): 122-128. ]
|
[15] |
李合生, 孙群. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
|
|
[Li Hesheng, Sun Qun. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2000. ]
|
[16] |
蔡庆生. 植物生理学实验[M]. 北京: 中国农业大学出版社, 2013.
|
|
[Cai Qingsheng. Plant Physiology Experiments[M]. Beijing: China Agricultural University Press, 2013. ]
|
[17] |
许志文, 张小全, 胡育玮, 等. 烤烟不同生长发育时期叶片保水力变化特征[J]. 中国烟草科学, 2018, 39(2): 17-24.
|
|
[Xu Zhiwen, Zhang Xiaoquan, Hu Yuwei, et al. Characteristics of leaf water retention capacity in flue-cured tobacco at different growth stages[J]. Chinese Tobacco Science, 2018, 39(2): 17-24. ]
|
[18] |
Bian F Y, Wang Y K, Duan B. et al. Drought stress introduces growth, physiological traits and ecological stoichiometry changes in two contrasting Cunninghamia lanceolata cultivars planted in continuous-plantation soils[J]. BMC Plant Biology, 2021, 21(1): 379.
doi: 10.1186/s12870-021-03159-3
|
[19] |
马梦茹, 王占林, 贺康宁, 等. 不同土壤含水量与光照对山杏和四翅滨藜光合作用的影响[J]. 江苏农业科学, 2017, 45(22): 126-129.
|
|
[Ma Mengru, Wang Zhanlin, He Kangning, et al. Effects of different soil water content and light on photosynthesis of Prunus armeniaca and Atriplex canescen[J]. Jiangsu Agricultural Sciences, 2017, 45(22): 126-129. ]
|
[20] |
Pyankov V I, Kondratchuk A V, Shipley B. Leaf structure and specific leaf mass: The alpine desert plants of the Eastern Pamirs, Tadjikistan[J]. New Phytologist, 1999, 143(1): 131-142.
doi: 10.1046/j.1469-8137.1999.00435.x
|
[21] |
汤章城. 逆境条件下植物脯氨酸的累积及其可能的意义[J]. 植物生理学通讯, 1984(1): 15-21.
|
|
[Tang Zhangcheng. Accumulation of plant proline under adversity and its possible significance[J]. Plant Physiology Journal, 1984(1): 15-21. ]
|
[22] |
Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59: 206-216.
doi: 10.1016/j.envexpbot.2005.12.006
|
[23] |
Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management[J]. Agronmy for Sustainable Development, 2009, 29(1): 185-212.
|
[24] |
汤东, 程平, 杨建军, 等. 天山北坡山前植物对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1683-1694.
|
|
[Tang Dong, Cheng Ping, Yang Jianjun, et al. Physiological responses of plants to drought stress in the Northern Piedmont, Tianshan Mountains[J]. Arid Zone Research, 2021, 38(6): 1683-1694. ]
|
[25] |
刘慧, 张崇洋, 刘世亮, 等. 干旱胁迫对屋顶绿化植物小叶黄杨叶片抗氧化特性的影响[J]. 林业与环境科学, 2022, 38(3): 86-93.
|
|
[Liu Hui, Zhang Chongyang, Liu Shiliang, et al. Effects of drought stress on antioxidant properties of roof greening plant Buxu microphylla leaves[J]. Forestry and Environmental Science, 2022, 38(3): 86-93. ]
|
[26] |
苏志豪, 周晓兵, 姜小龙, 等. 不同土壤水分条件下沙生柽柳(Tamarix taklamakanensis)的生理生化特征及适应性[J]. 干旱区研究, 2021, 38(1): 198-206.
|
|
[Su Zhihao, Zhou Xiaobing, Jiang Xiaolong, et al. Physiological and biochemical characteristics and adaptability of Tamarix taklamakanensis in different ecological habitats in the Tarim Basin[J]. Arid Zone Research, 2021, 38(1): 198-206. ]
|
[27] |
张玉玉, 王进鑫, 马戌, 等. 干旱后复水对侧柏幼苗叶绿素含量的影响[J]. 西南林业大学学报(自然科学), 2021, 41(5): 10-17.
|
|
[Zhang Yuyu, Wang Jinxin, Ma Xu, et al. Effect of rewatering on chlorophyll content of Platycladus orientalis seedlings after drought[J]. Journal of Southwest Forestry University(Natural Sciences), 2021, 41(5): 10-17. ]
|
[28] |
何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展[J]. 植物生态学报, 2019, 43(12): 1021-1035.
doi: 10.17521/cjpe.2019.0122
|
|
[He Yunyu, Guo Shuiliang, Wang Zhe. Research progress of trade-off relationships of plant functional traits[J]. Chinese Journal of Plant Ecology, 2019, 43(12): 1021-1035. ]
doi: 10.17521/cjpe.2019.0122
|
[29] |
周洁, 杨晓东, 王雅芸, 等. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076.
doi: 10.17521/cjpe.2021.0338
|
|
[Zhou Jie, Yang Xiaodong, Wang Yayun, et al. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought[J]. Chinese Journal of Plant Ecology, 2022, 46(9): 1064-1076. ]
doi: 10.17521/cjpe.2021.0338
|