干旱区研究 ›› 2023, Vol. 40 ›› Issue (12): 2016-2030.doi: 10.13866/j.azr.2023.12.14 cstr: 32277.14.j.azr.2023.12.14
收稿日期:
2023-04-20
修回日期:
2023-10-04
出版日期:
2023-12-15
发布日期:
2023-12-18
作者简介:
任孝宗(1983-),男,博士,副教授,主要研究方向为风沙地貌、干旱区环境演变和水文地球化学. E-mail: 基金资助:
REN Xiaozong(),WANG Songsong,WANG Yamei,LUO Jinhong,MA Yongtao
Received:
2023-04-20
Revised:
2023-10-04
Published:
2023-12-15
Online:
2023-12-18
摘要:
新月形沙丘和抛物线沙丘可以相互转化和共存,对共存区地貌特征的研究有助于对其形成原因的理解和为防沙治沙提供科学依据。本文基于Esri历史影像服务,对浑善达克沙地西部新月形沙丘和抛物线沙丘共存区3个时期(2008年1月15日、2011年6月4日和2016年9月20日)的沙丘形态参数进行了提取,并计算了沙丘的移动方向和移动速度。结果表明:典型新月形沙丘集中分布于沙地西部的15个与干湖盆有关的区域,雏形新月形沙丘和雏形抛物线沙丘则依次分布在干湖盆外围,干湖盆的出现是浑善达克沙地典型新月形沙丘发育的关键因素,对湖泊干涸引起的沙漠化应引起足够重视。对共存区最典型的5区分析发现,典型新月形沙丘和雏形新月形沙丘在涉及到两翼的形态参数分布模式上与雏形抛物线沙丘有明显差异。进一步对沙丘形态参数间的相关性分析发现,从新月形沙丘向抛物线沙丘的转变过程中,迎风坡长、背风坡长和底面积的变化具有继承性,两翼在该过程中变化最大。此外,3类沙丘的移动方向在数值上差异不大并与合成输沙势方向(RDD)的变化一致,但三者的移动速度差异明显,且影响不同类型沙丘移动速度的因素也不相同。其中,植被对植被覆盖状况相对良好的雏形抛物线沙丘影响最明显,表现为其移动速度与同时期的沙地NDVI变化趋势一致;而风速对植被覆盖较低的典型新月形沙丘和雏形新月形沙丘影响更显著,表现为其移动速度与同时期输沙势(DP)和合成输沙势(RDP)的变化趋势一致。此外,地形、沙源和人类活动对共存区沙丘的形态和移动均有影响。
任孝宗,王嵩松,王亚梅,罗进洪,马永桃. 浑善达克沙地西部新月形沙丘和抛物线沙丘共存区的地貌特征[J]. 干旱区研究, 2023, 40(12): 2016-2030.
REN Xiaozong,WANG Songsong,WANG Yamei,LUO Jinhong,MA Yongtao. Geomorphologic characteristics of the co-existence zone of barchan and parabolic dunes in western Hunshandake Sandy Land[J]. Arid Zone Research, 2023, 40(12): 2016-2030.
表1
新月形沙丘和抛物线沙丘共存区各类沙丘的形态特征参数"
迎风坡LU/m | 背风坡LD/m | 翼间宽W/m | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
最小值 | 最大值 | 平均值 | 最小值 | 最大值 | 平均值 | 最小值 | 最大值 | 平均值 | |||
1期1型沙丘 | 93.18 | 241.26 | 163.66 | 17.29 | 49.67 | 33.07 | 106.11 | 356.15 | 217.95 | ||
1期2型沙丘 | 78.03 | 293.52 | 180.05 | 8.45 | 49.07 | 28.79 | 72.27 | 320.79 | 189.29 | ||
1期3型沙丘 | 99.58 | 307.90 | 212.79 | 13.66 | 36.94 | 26.62 | 52.36 | 311.31 | 172.55 | ||
2期1型沙丘 | 109.76 | 233.90 | 167.72 | 17.91 | 41.22 | 26.18 | 117.38 | 363.22 | 208.39 | ||
2期2型沙丘 | 83.60 | 285.66 | 188.52 | 8.55 | 39.13 | 22.55 | 78.22 | 346.92 | 186.55 | ||
2期3型沙丘 | 105.05 | 339.38 | 223.50 | 7.61 | 30.43 | 19.07 | 48.25 | 248.96 | 150.86 | ||
3期1型沙丘 | 112.74 | 233.69 | 177.99 | 18.72 | 40.34 | 27.86 | 138.05 | 334.58 | 208.33 | ||
3期2型沙丘 | 91.64 | 281.26 | 193.02 | 9.06 | 37.74 | 24.07 | 66.62 | 321.69 | 180.09 | ||
3期3型沙丘 | 120.47 | 330.25 | 220.29 | 8.67 | 39.22 | 23.06 | 49.06 | 282.46 | 158.45 | ||
南翼LS/m | 北翼LN/m | 底面积S/km2 | |||||||||
最小值 | 最大值 | 平均值 | 最小值 | 最大值 | 平均值 | 最小值 | 最大值 | 平均值 | |||
1期1型沙丘 | 33.92 | 129.88 | 83.42 | 33.21 | 117.47 | 79.46 | 0.03 | 0.09 | 0.06 | ||
1期2型沙丘 | 22.65 | 504.75 | 89.36 | 20.30 | 728.25 | 110.29 | 0.01 | 0.14 | 0.07 | ||
1期3型沙丘 | 41.74 | 840.73 | 356.20 | 28.73 | 902.92 | 376.63 | 0.03 | 0.11 | 0.08 | ||
2期1型沙丘 | 42.71 | 171.29 | 85.74 | 41.99 | 133.96 | 78.81 | 0.03 | 0.08 | 0.05 | ||
2期2型沙丘 | 16.71 | 560.49 | 132.89 | 9.69 | 715.70 | 123.86 | 0.01 | 0.14 | 0.06 | ||
2期3型沙丘 | 33.22 | 827.25 | 376.48 | 25.41 | 899.38 | 396.29 | 0.03 | 0.11 | 0.08 | ||
3期1型沙丘 | 42.81 | 172.53 | 100.54 | 37.89 | 113.17 | 70.30 | 0.03 | 0.08 | 0.06 | ||
3期2型沙丘 | 22.75 | 576.79 | 140.49 | 15.73 | 751.95 | 130.28 | 0.01 | 0.14 | 0.06 | ||
3期3型沙丘 | 35.67 | 845.07 | 369.31 | 36.38 | 901.68 | 402.97 | 0.03 | 0.13 | 0.08 |
表2
新月形沙丘和抛物线沙丘共存区各类沙丘的平均移动方向(以正北为0°,顺时针方向旋转)"
平均移动 方向/(°) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
沙丘类型 | 1时段(1~2期) | 2时段(2~3期) | |||||||||||
迎风坡前端 | 沙丘顶点 | 背风坡底 | 南翼 | 北翼 | 整体移向 | 迎风坡前端 | 沙丘顶点 | 背风坡底 | 南翼 | 北翼 | 整体移向 | ||
典型新月形沙丘 | 96 | 91 | 95 | 94 | 89 | 93 | 97 | 107 | 101 | 98 | 93 | 99 | |
雏形新月形沙丘 | 94 | 92 | 93 | 95 | 93 | 94 | 95 | 107 | 99 | 97 | 103 | 100 | |
雏形抛物线沙丘 | 93 | 97 | 95 | 100 | 90 | 95 | 98 | 103 | 97 | 95 | 99 | 98 | |
平均值 | 94 | 93 | 94 | 97 | 91 | 94 | 97 | 105 | 99 | 96 | 98 | 99 |
表3
新月形沙丘和抛物线沙丘共存区各类沙丘的平均移动速度"
平均移动速度/(m·a-1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
沙丘类型 | 1时段(1~2期) | 2时段(2~3期) | |||||||||||
迎风坡前端 | 沙丘顶点 | 背风坡底 | 南翼 | 北翼 | 整体移速 | 迎风坡前端 | 沙丘顶点 | 背风坡底 | 南翼 | 北翼 | 整体移速 | ||
典型新月形沙丘 | 3.52 | 4.73 | 2.92 | 3.63 | 2.63 | 3.49 | 3.33 | 3.98 | 3.77 | 4.01 | 3.60 | 3.74 | |
雏形新月形沙丘 | 2.88 | 5.57 | 3.08 | 3.00 | 2.53 | 3.41 | 3.28 | 3.98 | 3.93 | 3.73 | 3.92 | 3.77 | |
雏形抛物线沙丘 | 2.95 | 5.72 | 3.27 | 3.55 | 2.62 | 3.62 | 2.80 | 2.99 | 2.93 | 2.01 | 2.30 | 2.60 | |
平均值 | 3.12 | 5.34 | 3.09 | 3.40 | 2.60 | 3.51 | 3.14 | 3.65 | 3.54 | 3.25 | 3.27 | 3.37 |
[1] |
Zhang D, Liang P, Yang X, et al. The control of wind strength on the barchan to parabolic dune transition[J]. Earth Surface Processes and Landforms, 2020, 45(10): 2300-2313.
doi: 10.1002/esp.v45.10 |
[2] |
Langford R P, Rose J M, White D E. Groundwater salinity as a control on development of eolian landscape: An example from the White Sands of New Mexico[J]. Geomorphology, 2009, 105(1-2): 39-49.
doi: 10.1016/j.geomorph.2008.01.020 |
[3] |
Yan N, Baas A C W. Parabolic dunes and their transformations under environmental and climatic changes: Towards a conceptual framework for understanding and prediction[J]. Global and Planetary Change, 2015, 124: 123-148.
doi: 10.1016/j.gloplacha.2014.11.010 |
[4] |
Yan N, Baas A C W. Environmental controls, morphodynamic processes, and ecogeomorphic interactions of barchan to parabolic dune transformations[J]. Geomorphology, 2017, 278: 209-237.
doi: 10.1016/j.geomorph.2016.10.033 |
[5] | Livingstone I, Warren A. Aeolian Geomorphology: A New Introduction[M]. Hoboken, USA: Wiley Blackwell, 2019. |
[6] |
Dong Z, Chen G, He X, et al. Controlling blown sand along the highway crossing the Taklimakan Desert[J]. Journal of Arid Environments, 2004, 57(3): 329-344.
doi: 10.1016/j.jaridenv.2002.02.001 |
[7] | 吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2003. |
[Wu Zheng. Chinese Desert and Its Management[M]. Beijing: Science Press, 2009. ] | |
[8] | 李继彦. 柴达木盆地线形沙丘发育环境与演化模式[M]. 西安: 西安交通大学出版社, 2020. |
[Li Jiyan. Development Environment and Evolution Patterns of Linear Dunes in the Qaidam Basin[M]. Xi’an: Xi’an Jiaotong University Press, 2020. ] | |
[9] |
Girardi J D, Davis D M. Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery[J]. Geomorphology, 2010, 114(4): 530-541.
doi: 10.1016/j.geomorph.2009.08.011 |
[10] |
Tsoar H, Blumberg D G. Formation of parabolic dunes from barchan and transverse dunes along Israel’s Mediterranean coast[J]. Earth Surface Processes and Landforms, 2002, 27(11): 1147-1161.
doi: 10.1002/esp.v27:11 |
[11] |
Hanoch G, Yizhaq H, Ashkenazy Y. Modeling the bistability of barchan and parabolic dunes[J]. Aeolian Research, 2018, 35: 9-18.
doi: 10.1016/j.aeolia.2018.07.003 |
[12] | Reitz M D, Jerolmack D J, Ewing R C, et al. Barchan-parabolic dune pattern transition from vegetation stability threshold[J]. Geophysical Research Letters, 2010, 37(19): L19402. |
[13] |
Wolfe S A, Hugenholtz C H. Barchan dunes stabilized under recent climate warming on the northern Great Plains[J]. Geology, 2009, 37(11): 1039-1042.
doi: 10.1130/G30334A.1 |
[14] | Goudie A. Parabolic dunes: Distribution, form, morphology and change[J]. Annals of Arid Zone, 2011, 50(3&4): 1-7. |
[15] |
Kumar M, Goossens E, Goossens R. Assessment of sand dune change detection in Rajasthan (Thar) Desert, India[J]. International Journal of Remote Sensing, 1993, 14(9): 1689-1703.
doi: 10.1080/01431169308953995 |
[16] |
Moosavi V, Moradi H, Shamsi S R F, et al. Assessment of the planimetric morphology of barchan dunes[J]. Catena, 2014, 120: 12-19.
doi: 10.1016/j.catena.2014.03.017 |
[17] |
石唯康, 董治宝, 陈国祥, 等. 新月形沙丘与线形沙丘共生现象探讨——以撒哈拉沙漠为例[J]. 中国沙漠, 2020, 40(3): 135-144.
doi: 10.7522/j.issn.1000-694X.2019.00112 |
[Shi Weikang, Dong Zhibao, Chen Guoxiang, et al. Discussion on the symbiosis of barchan dune and linear dune: A case study from Sahara Desert[J]. Journal of Desert Research, 2020, 40 (3): 135-144. ]
doi: 10.7522/j.issn.1000-694X.2019.00112 |
|
[18] | 王静璞, 刘连友, 沈玲玲. 基于Google Earth的毛乌素沙地新月形沙丘移动规律研究[J]. 遥感技术与应用, 2013, 28(6): 1094-1100. |
[Wang Jingpu, Liu Lianyou, Shen Lingling. Research of the barchan dunes movement in the MU US Sandy Land on Google Earth software[J]. Remote Sensing Technology and Application, 2013, 28(6): 1094-1100. ] | |
[19] |
杨军怀, 董治宝, 刘铮瑶, 等. 库鲁克沙漠风沙地貌与沙丘移动[J]. 中国沙漠, 2019, 39(4): 1-8.
doi: 10.7522/j.issn.1000-694X.2018.00100 |
[Yang Junhuai, Dong Zhibao, Liu Zhengyao, et al. Aeolian geomorphology and dune migration in the Quruq Desert, China[J]. Journal of Desert Research, 2019, 39(4): 1-8. ]
doi: 10.7522/j.issn.1000-694X.2018.00100 |
|
[20] | 杨馥宁, 吕萍, 马芳, 等. 腾格里沙漠南部格状沙丘的形态演变及移动特征[J]. 中国沙漠, 2023, 43(1): 1-9. |
[Yang Funing, Lü Ping, Ma Fang, et al. Morphological evolution and migration characteristics of reticulate dunes at southern fringe of Tengger Desert[J]. Journal of Desert Research, 2023, 43(1): 1-9. ] | |
[21] | Dakir D, Rhinane H, Saddiqi O, et al. Automatic extraction of dunes from Google Earth images new approach to study the dunes migration in the Laâyoune city of Morocco[C]// International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2016, 42: 53-59. |
[22] | Vermeesch P, Drake N. Remotely sensed dune celerity and sand flux measurements of the world's fastest barchans (Bodélé, Chad)[J]. Geophysical Research Letters, 2008, 35(24): L24404. |
[23] |
Levin N, Ben-Dor E, Karnieli A. Topographic information of sand dunes as extracted from shading effects using Landsat images[J]. Remote Sensing of Environment, 2004, 90(2): 190-209.
doi: 10.1016/j.rse.2003.12.008 |
[24] | 任孝宗, 李建刚, 刘敏, 等. 浑善达克沙地东部地区天然水体的水化学组成及其控制因素[J]. 干旱区研究, 2019, 36(4): 791-800. |
[Ren Xiaozong, Li Jiangang, Liu Min, et al. Hydrochemical composition of natural waters and its affecting factors in the east Hunshandak Sandy Land[J]. Arid Zone Research, 2019, 36(4):791-800. ] | |
[25] |
Yang X, Wang X, Liu Z, et al. Initiation and variation of the dune fields in semi-arid China——with a special reference to the Hunshandake Sandy Land, Inner Mongolia[J]. Quaternary Science Reviews, 2013, 78: 369-380.
doi: 10.1016/j.quascirev.2013.02.006 |
[26] | 刘树林, 王涛, 郭坚. 浑善达克沙地春季风沙活动特征观测研究[J]. 中国沙漠, 2006, 26(3): 356-361. |
[Liu Shulin, Wang Tao, Guo Jian. Characteristics of blown sand activities in Hunshandake Sandy Land in spring[J]. Journal of Desert Research, 2006, 26(3): 356-361. ] | |
[27] |
Yang X, Liang P, Zhang D, et al. Holocene aeolian stratigraphic sequences in the eastern portion of the desert belt (sand seas and sandy lands) in northern China and their palaeoenvironmental implications[J]. Science China Earth Sciences, 2019, 62(8): 1302-1315.
doi: 10.1007/s11430-018-9304-y |
[28] | 任孝宗. 水化学图形表达方法、MATLAB实现及在天然水体中的应用[M]. 西安: 西安交通大学出版社, 2021. |
[Ren Xiaozong. Graphic expression, MATLAB Implementation and Its Application for Hydrochemistry in Natural Water Bodies[M]. Xi’an: Xi’an Jiaotong University Press, 2021. ] | |
[29] | 杨军怀. 塔克拉玛干沙漠沙丘移动研究[D]. 西安: 陕西师范大学, 2019. |
[Yang Huaijun. A Study on the Movement of Sand Dunes in the Taklamakan Desert[D]. Xi’an: Shaanxi Normal University, 2019. ] | |
[30] | 王涛. 中国沙漠与沙漠化[M]. 石家庄: 河北科学技术出版社, 2003. |
[Wang Tao. Desert and Desertification in China[M]. Shijiazhuang: Hebei Science & Technology Press, 2003. ] | |
[31] | 朱震达, 吴正, 刘恕, 等. 中国沙漠概论[M]. 北京: 科学出版社, 1980. |
[Zhu Zhenda, Wu Zheng, Liu Shu, et al. An Outline of Chinese Deserts[M]. Beijing: Science Press, 1980. ] | |
[32] |
Wilson I G. Ergs[J]. Sedimentary Geology, 1973, 10(2): 77-106.
doi: 10.1016/0037-0738(73)90001-8 |
[33] |
Mckee E D. Structures of dunes at white sands national monument, New Mexico (and a comparison with structures of dunes from other selected areas)[J]. Sedimentology, 1966, 7(1): 3-69.
doi: 10.1111/sed.1966.7.issue-1 |
[34] | Mckee E D, Moiola R J. Geometry and growth of the white sands dune field, New Mexico[J]. Journal of Research of the US Geological Survey, 1975, 3(1): 59-66. |
[35] |
Yang X, Scuderi L, Paillou P, et al. Quaternary environmental changes in the drylands of China——A critical review[J]. Quaternary Science Reviews, 2011, 30(23-24): 3219-3233.
doi: 10.1016/j.quascirev.2011.08.009 |
[36] |
白雪梅, 春喜, 斯琴毕力格, 等. 近45 a内蒙古浑善达克沙地湖泊群的变化[J]. 湖泊科学, 2016, 28(5): 1086-1094.
doi: 10.18307/2016.0519 |
[Bai Xuemei, Chun Xi, Siqin Bilige, et al. Changes of lakes in Hunshandake Sandy Land in the past 45 years, Inner Mongolia[J]. Journal of Lake Sciences, 2016, 28(5): 1086-1094. ]
doi: 10.18307/2016.0519 |
|
[37] |
Ma W, Wang X, Zhou N, et al. Relative importance of climate factors and human activities in impacting vegetation dynamics during 2000-2015 in the Otindag Sandy Land, northern China[J]. Journal of Arid Land, 2017, 9(4): 558-567.
doi: 10.1007/s40333-017-0062-y |
[38] |
Lancaster N, Baas A. Influence of vegetation cover on sand transport by wind: Field studies at Owens Lake, California[J]. Earth Surface Processes and Landforms, 1998, 23(1): 69-82.
doi: 10.1002/(ISSN)1096-9837 |
[39] |
马永桃, 任孝宗, 胡慧芳, 等. 基于地理探测器的浑善达克沙地植被变化定量归因[J]. 中国沙漠, 2021, 41(4): 195-204.
doi: 10.7522/j.issn.1000-694X.2021.00066 |
[Ma Yongtao, Ren Xiaozong, Hu Huifang, et al. Vegetation dynamics and its driving force in Otindag Sandy Land based on Geodetector[J]. Journal of Desert Research, 2021, 41(4): 195-204. ]
doi: 10.7522/j.issn.1000-694X.2021.00066 |
|
[40] | Fryberger S G, Dean G. Dune forms and wind regime[C]// Edwin M. A Study of Global Sand Seas. Washington: United states government printing office, 1979. |
[41] |
Cui X, Sun H, Dong Z, et al. Temporal variation of the wind environment and its possible causes in the Mu Us Dunefield of Northern China, 1960—2014[J]. Theoretical and Applied Climatology, 2019, 135(3): 1017-1029.
doi: 10.1007/s00704-018-2417-5 |
[42] |
Wang X, Zhou Z, Dong Z. Control of dust emissions by geomorphic conditions, wind environments and land use in northern China: An examination based on dust storm frequency from 1960 to 2003[J]. Geomorphology, 2006, 81(3-4): 292-308.
doi: 10.1016/j.geomorph.2006.04.015 |
[43] |
Yang X, Forman S, Hu F, et al. Initial insights into the age and origin of the Kubuqi sand sea of northern China[J]. Geomorphology, 2016, 259: 30-39.
doi: 10.1016/j.geomorph.2016.02.004 |
[44] |
Yang X, Scuderi L, Liu T, et al. Formation of the highest sand dunes on Earth[J]. Geomorphology, 2011, 135(1-2): 108-116.
doi: 10.1016/j.geomorph.2011.08.008 |
[45] |
Parteli E J R, Durán O, Bourke M C, et al. Origins of barchan dune asymmetry: Insights from numerical simulations[J]. Aeolian Research, 2014, 12: 121-133.
doi: 10.1016/j.aeolia.2013.12.002 |
[1] | 李鑫鑫, 毛东雷, 来风兵, 薛杰, 何强强, 马玉娇. 策勒河下游风积地貌沉积物粒度特征及沙源分析[J]. 干旱区研究, 2024, 41(8): 1413-1422. |
[2] | 刘鑫, 高鑫. 塔克拉玛干沙漠南缘新月形沙丘移动特征[J]. 干旱区研究, 2024, 41(4): 661-673. |
[3] | 何晨晨, 吴盈盈, 田永胜, 马瑞, 王振亭. 民勤绿洲外围新月形沙丘宽高比与移动速率变化特征[J]. 干旱区研究, 2023, 40(2): 280-291. |
[4] | 陈臻琦,张靖,张贻龙,刘睿. 基于VSD的近20 a来浑善达克沙地生态脆弱性变化研究[J]. 干旱区研究, 2021, 38(5): 1464-1473. |
[5] | 任孝宗, 李建刚, 刘敏, 李继彦. 浑善达克沙地东部地区天然水体的水化学组成及其控制因素[J]. 干旱区研究, 2019, 36(4): 791-800. |
[6] | 于瑞鑫, 田娜, 王兴, 王磊, 杨新国, 蒋齐, 周娟. 短花针茅荒漠草原斑块尺度物种多样性及其共存格局[J]. 干旱区研究, 2019, 36(2): 444-450. |
[7] | 蔡东旭,李生宇,雷加强,王海峰,孟晓于. 新月形沙丘对湖积平原风蚀荒漠化的影响[J]. 干旱区研究, 2018, 35(6): 1496-1504. |
[8] | 彭羽, 薛达元, 牛书丽, 刘美珍, 李永庚, 蒋高明. 1983-2003年浑善达克沙地中部沙丘植被在放牧条件下的比较[J]. 干旱区研究, 2011, 28(2): 313-320. |
|