干旱区研究 ›› 2023, Vol. 40 ›› Issue (1): 111-122.doi: 10.13866/j.azr.2023.01.12 cstr: 32277.14.AZR.20230112
收稿日期:
2022-06-10
修回日期:
2022-08-21
出版日期:
2023-01-15
发布日期:
2023-02-24
作者简介:
孟娜(1994-),女,博士研究生,主要研究方向为生态系统服务价值评估研究. E-mail: 基金资助:
Received:
2022-06-10
Revised:
2022-08-21
Published:
2023-01-15
Online:
2023-02-24
摘要:
过去70 a我国在干旱半干旱地区展开大规模植树造林活动并取得显著成效,由于受人类活动和气候影响,导致局部地区造林失败。虽然在干旱地区造林的潜力被得到认可,但是造林具体应集中在哪些微观地区尚未可知。本文以黄土高原典型区域山西省为例,构建宜林地识别框架,利用PLUS模型和马尔可夫链模拟2030年不同情景下土地利用变化,分析林地扩张、林分内部变化趋势和空间分布。结果表明:当前山西省林地增长空间为5.38%,且东南部为主要潜在增长区,中西部林地边缘存在有林地退化的可能,而北部林地破碎化程度较高;林分内部互相转换频率较高;按扩张潜力,依次为有林地>灌木林>疏林地>其他林地。本研究可为山西省植树造林有效管理和森林固碳水平提升提供参考。
孟娜, 张颖. 山西省林地扩展优先区识别[J]. 干旱区研究, 2023, 40(1): 111-122.
MENG Na, ZHANG Ying. Identification of priority areas for forest land expansion in Shanxi Province[J]. Arid Zone Research, 2023, 40(1): 111-122.
表1
土地利用需求变化驱动因子"
数据类型 | 数据名称 | 年份 | 分辨率/m | 数据来源 |
---|---|---|---|---|
土壤驱动因子 | 土壤融水量;土壤PH值;距基黏岩深度;有机土壤的累积概率;土壤有机碳储量;含沙量;黏土含量;土壤纹理 | 2017 | 250 | https://www.isric.org/ |
土壤类型 | 1995 | 1000 | http://www.resdc.cn/ | |
社会经济驱动因子 | 人口;GDP;临近城市;临近农村;临近铁路;临近高速公路;临近主干道;临近二级公路;临近三级公路;临近四级公路 | 2015 | 30 | https://www.openstreetmap.org/ |
气候及环境驱动因子 | DEM;坡度;坡向 | 2016 | 90 | https://lpdaac.usgs.gov/ |
年平均温度;年降水量 | 1970—2000 | 30 | http://www.worldclim.org/ |
表2
2010—2020年土地利用类型转移概率矩阵"
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 0.8888 | 0.0271 | 0.0103 | 0.0016 | 0.0298 | 0.0375 | 0.0010 | 0.0038 | 0.0001 |
2 | 0.0277 | 0.8426 | 0.0127 | 0.0009 | 0.0412 | 0.0670 | 0.0017 | 0.0060 | 0.0001 |
3 | 0.0327 | 0.0283 | 0.7247 | 0.0018 | 0.0931 | 0.1073 | 0.0012 | 0.0107 | 0.0002 |
4 | 0.1043 | 0.0468 | 0.0278 | 0.6230 | 0.1050 | 0.0439 | 0.0063 | 0.0424 | 0.0005 |
5 | 0.0134 | 0.0139 | 0.0114 | 0.0051 | 0.7907 | 0.1082 | 0.0055 | 0.0517 | 0.0002 |
6 | 0.0234 | 0.0294 | 0.0142 | 0.0016 | 0.1400 | 0.7723 | 0.0020 | 0.0167 | 0.0003 |
7 | 0.0165 | 0.0108 | 0.0086 | 0.0056 | 0.2388 | 0.0825 | 0.5666 | 0.0641 | 0.0064 |
8 | 0.0028 | 0.0032 | 0.0026 | 0.0017 | 0.1748 | 0.0213 | 0.0039 | 0.7894 | 0.0003 |
9 | 0.0084 | 0.0084 | 0.02633 | 0.0098 | 0.2453 | 0.1266 | 0.0620 | 0.0867 | 0.4265 |
表4
生态保护情景下各土地利用类型转换比重"
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 20% | -20% | -20% | - | -30% | -30% |
2 | 20% | - | - | - | -20% | -10% | - | -30% | -30% |
3 | 20% | - | - | - | -10% | -10% | - | -20% | -20% |
4 | 20% | - | - | - | -10% | -10% | - | -20% | -20% |
5 | 20% | - | - | - | - | - | - | - | - |
6 | - | 20% | 20% | - | -20% | -20% | - | - | - |
7 | - | - | - | - | - | - | - | - | - |
8 | - | - | - | - | - | - | - | - | - |
9 | 10% | 20% | 20% | 20% | - | 10% | 10% | - | - |
表5
城镇化发展情景下各土地利用类型转换比重"
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
1 | - | -20% | -20% | -20% | -30% | -20% | - | -10% | -30% |
2 | 20% | - | - | -20% | -20% | -20% | - | - | -20% |
3 | 20% | 20% | - | -20% | -20% | -20% | - | - | -20% |
4 | - | - | 20% | - | - | - | - | 20% | - |
5 | 10% | 20% | 20% | 20% | - | - | - | 20% | - |
6 | - | 20% | 20% | - | -20% | -20% | - | 20% | -20% |
7 | - | - | - | - | -20% | - | - | -20% | -20% |
8 | -30% | -30% | -30% | -30% | - | -30% | -30% | - | -30% |
9 | 10% | 20% | 20% | 20% | - | - | 20% | 20% | - |
表7
多情景下山西省土地利用面积对比"
土地利用类型 | 2020年实际情景 | 2030年基准情景 | 2030年生态保护情景 | 2030年城镇化情景 |
---|---|---|---|---|
有林地 | 193.67 | 192.33 | 230 | 190.32 |
灌木林 | 167.94 | 164.97 | 166.2 | 168.16 |
疏林地 | 74.21 | 74.21 | 63.93 | 73.09 |
其他林地 | 8.83 | 8.47 | 8.46 | 8.34 |
耕地 | 578.01 | 572.94 | 554.37 | 553.41 |
草地 | 443.01 | 435.48 | 433.09 | 451.39 |
水域 | 15 | 12.02 | 12.43 | 12.18 |
建设用地 | 86.01 | 93.34 | 85.55 | 96.87 |
未利用地 | 1.05 | 0.95 | 0.68 | 0.96 |
[1] | Yıldız O, Esen D, Sarginci M, et al. Restoration success in afforestation sites established at different times in arid lands of Central Anatolia[J]. Forest Ecology and Management, 2021, 503(1): 378-1127. |
[2] |
Cao S X, Chen L, Shankman D, et al. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration[J]. Earth-Science Reviews, 2011, 104(4): 240-245.
doi: 10.1016/j.earscirev.2010.11.002 |
[3] |
Cortina J, Amat B, Castillo V, et al. The restoration of vegetation cover in the semi-arid Iberian southeast[J]. Journal of Arid Environments, 2011, 75(12): 1377-1384.
doi: 10.1016/j.jaridenv.2011.08.003 |
[4] |
Morreale L L, Thompson J R, Tang X J, et al. Elevated growth and biomass along temperate forest edges[J]. Nature Communications, 2021, 12(1): 7181.
doi: 10.1038/s41467-021-27373-7 pmid: 34893596 |
[5] |
Hudiburg T W, Law B E, Moomaw W R, et al. Meeting GHG reduction targets requires accounting for all forest sector emissions[J]. Environmental Research Letters, 2019, 14(9): 095005.
doi: 10.1088/1748-9326/ab28bb |
[6] | Fischer R, Taubert F, Müller M S, et al. Accelerated forest fragmentation leads to critical increase in tropical forest edge area[J]. Science Advances, 2021, 7(37): 7012. |
[7] |
Winkler K, Fuchs R, Rounsevell M, et al. Global land use changes are four times greater than previously estimated[J]. Nature Communications, 2021, 12(1): 2501.
doi: 10.1038/s41467-021-22702-2 pmid: 33976120 |
[8] | Bastin J F, Finegold Y, Garcia C, et al. The global tree resto-ration potential[J]. Science, 2019, 6448(365): 76-79. |
[9] | Laestadius L, Maginnis S, Minnemeyer S, et al. Mapping opportunities for forest landscape restoration[J]. Unasylva, 2011, 62: 47-48. |
[10] |
Bryan B A, Gao L, Ye Y, et al. China’s response to a national land-system sustainability emergency[J]. Nature, 2018, 559: 193-204.
doi: 10.1038/s41586-018-0280-2 |
[11] | 邬亚娟, 刘廷玺, 童新, 等. 基于面向对象的干旱半干旱地区植被分类[J]. 干旱区研究, 2020, 37(4): 1026-1034. |
[Wu Yajuan, Liu Tingxi, Tong Xin, et al. Object-oriented classification of vegetation in arid and semi-arid regions[J]. Arid Zone Research, 2020, 37(4): 1026-1034.] | |
[12] |
Dang X, Gao S, Tao R, et al. Do environmental conservation programs contribute to sustainable livelihoods? Evidence from China’s grain-for-green program in northern Shaanxi province[J]. Science of The Total Environment, 2020, 719: 137436.
doi: 10.1016/j.scitotenv.2020.137436 |
[13] | 裴宏伟, 刘孟竹, 李雅丽, 等. 生态修复措施对干旱半干旱地区生态系统服务影响研究——以河北坝上地区为例[J]. 水土保持研究, 2022, 29(2): 192-199, 205. |
[Pei Hongwei, Liu Mengzhu, Li Yali, et al. Study on the impact of ecological restoration measures on ecosystem services in arid and semi-arid regions: An example from the dam area of Hebei[J]. Soil and Water Conservation Research, 2022, 29(2): 192-199, 205.] | |
[14] |
Dong L B, Li J W, Liu Y L, et al. Forestation delivers significantly more effective results in soil C and N sequestrations than natural succession on badly degraded areas: Evidence from the Central Loess Plateau case[J]. Catena, 2022, 208: 105734.
doi: 10.1016/j.catena.2021.105734 |
[15] |
Dulamsuren C, Klinge M, Degener J, et al. Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest-steppe[J]. Global Change Biology, 2016, 22(2): 830-844.
doi: 10.1111/gcb.13127 pmid: 26463754 |
[16] |
Feng X, Fu B, Piao S, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6(11): 1019-1022.
doi: 10.1038/nclimate3092 |
[17] | 杨丹, 王晓峰. 黄土高原气候和人类活动对植被NPP变化的影响[J]. 干旱区研究, 2022, 39(2): 584-593 |
[Yang Dan, Wang Xiaofeng. Effects of climate and human activities on vegetation NPP changes in the Loess Plateau[J]. Arid Zone Research, 2022, 39(2): 584-593.] | |
[18] | 刘冠, 李国庆, 李洁, 等. 基于InVEST模型的1999—2016年麻塔流域碳储量变化及空间格局研究[J]. 干旱区研究, 2021, 38(1): 267-274. |
[Liu Guan, Li Guoqing, Li Jie, et al. Study of carbon stock changes and spatial patterns in the Mahta watershed from 1999-2016 based on InVEST model[J]. Arid Zone Research, 2021, 38(1): 267-274.] | |
[19] | 罗云建, 张小全, 朱建华, 等. 关帝山林区退化灌木林转变为华北落叶松林对生态系统碳储量的影响[J]. 生态学报, 2018, 38(23): 8354-8362. |
[Luo Yunjian, Zhang Xiaoquan, Zhu Jianhua, et al. Effects of transforming degraded shrubland to northern China larch forest in the Guandi Mountain forest area on ecosystem carbon stocks[J]. Acta Ecologica Sinica, 2018, 38(23): 8354-8362.] | |
[20] |
Wu X, Wang S, Fu B, et al. Spatial variation and influencing factors of the effectiveness of afforestation in China’s Loess Plateau[J]. Science of The Total Environment, 2021, 771(1): 144904.
doi: 10.1016/j.scitotenv.2020.144904 |
[21] |
Yu Y, Zhao W W, Martinez-Murillo J F, et al. Loess Plateau: From degradation to restoration[J]. Science of The Total Environment, 2020, 738(10): 140206.
doi: 10.1016/j.scitotenv.2020.140206 |
[22] | 王志印, 曹建生. 中国北方土石山区植被恢复及其生态效应研究进展[J]. 中国生态农业学报, 2019, 27(9): 1319-1331. |
[Wang Zhiyin, Cao Jiansheng. Research progress on the restoration of vegetation and its ecological effects in soil and rocky mountain areas in northern China[J]. Chinese Journal of Ecological Agriculture, 2019, 27(9): 1319-1331.] | |
[23] | 王丽平, 段四波, 张霄羽, 等. 中国区域植树造林对地表温度的影响[J]. 遥感学报, 2021, 25(8): 1862-1872. |
[Wang Liping, Duan Sibo, Zhang Xiaoyu, et al. Effects of regional afforestation on surface temperature in China[J]. Journal of Remote Sensing, 2021, 25(8): 1862-1872.] | |
[24] | 王欢欢, 赵杰, 岳超, 等. 黄土高原植被恢复对地表的冷却作用及变化规律[J]. 水土保持学报, 2021, 35(3): 214-220. |
[Wang Huanhuan, Zhao Jie, Yue Chao, et al. Cooling effect of vegetation restoration on the surface of loess plateau and the change pattern[J]. Journal of Soil and Water Conservation, 2021, 35(3): 214-220.] | |
[25] | 肖玉, 谢高地, 甄霖, 等. 三北工程黄土高原丘陵沟壑区森林降温增湿效果研究[J]. 生态学报, 2019, 39(16): 5836-5846. |
[Xiao Yu, Xie Gaogao, Zhen Lin, et al. Research on the effect of forest cooling and humidification in the hilly and ravine areas of the Loess Plateau of the Three Northern Projects[J]. Acta Ecologica Sinica, 2019, 39(16): 5836-5846.] | |
[26] |
Zhang L, Sun P S, Huettmann Falk, et al. Where should China practice forestry in a warming world?[J]. Global Change Biology, 2022, 28(7): 2461-2475.
doi: 10.1111/gcb.16065 |
[27] | 周璞. 山西省国土空间功能综合识别与分区优化研究[D]. 北京: 中国地质大学(北京), 2020. |
[Zhou Pu. Study on Comprehensive Identification and Zoning Optimization of Spatial Functions of Land in Shanxi Province[D]. Beijing: China University of Geosciences (Beijing), 2020.] | |
[28] | Han N L, Yu M, Jia P H. Multi-scenario landscape ecological risk simulation for sustainable development goals: A case study on the central mountainous area of Hainan Island[J]. Environmental Research and Public Health. 2022, 19(7): 19074030. |
[29] | 金梦婷, 徐丽萍, 徐权. 基于FLUS-Markov模型的多情景景观生态风险评价与预测——以南疆克州为例[J]. 干旱区研究, 2021, 38(6): 1793-1804. |
[Jin Mengting, Xu Liping, Xu Quan. Multi-scenario landscape ecological risk evaluation and prediction based on FLUS-Markov model: A case study of Kechu, South Xinjiang[J]. Arid Zone Research, 2021, 38(6): 1793-1804.] | |
[30] |
Liang X, Liu X, Li D, et al. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model[J]. International Journal of Geographical Information Science, 2018, 32(11), 2294-2316.
doi: 10.1080/13658816.2018.1502441 |
[31] |
Zhai H, Lv C Q, Liu, W Z, et al. Understanding spatio-temporal patterns of land use/land cover change under urbanization in Wuhan, China, 2000-2019[J]. Remote Sensing, 2021, 13(16): 3331.
doi: 10.3390/rs13163331 |
[32] |
Wang Z Y, Li X, Mao Y T, et al. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China[J]. Ecological Indicators, 2022, 134: 108499.
doi: 10.1016/j.ecolind.2021.108499 |
[33] |
Zhang D, Wang X, Qu L, et al. Land use/cover predictions incorporating ecological security for the Yangtze River Delta region, China[J]. Ecological Indicators, 2020, 119: 106841.
doi: 10.1016/j.ecolind.2020.106841 |
[34] |
Sun G, Zhou G, Zhang Z, et al. Potential water yield reduction due to forestation across China[J]. Journal of Hydrology, 2006, 328(31): 548-558.
doi: 10.1016/j.jhydrol.2005.12.013 |
[35] | 曹世雄. 生态修复项目对自然与社会的影响[J]. 中国人口·资源与环境, 2012, 22(11): 101-108. |
[Cao Shixiong. Impacts of ecological restoration projects on nature and society[J]. China Population, Resources and Environment, 2012, 22(11): 101-108.] | |
[36] | Cao S, Wang G, Chen L. Questionable value of planting thirsty trees in dry regions[J]. Nature, 2010, 465(5): 31. |
[37] |
Ma H, Lv Y, Li H. Complexity of ecological restoration in China[J]. Ecological Engineering, 2013, 52(3): 75-78.
doi: 10.1016/j.ecoleng.2012.12.093 |
[38] |
Mathias M, Cindy E, Wafa E A. Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis[J]. Forest Ecology and Management, 2020, 31(15): 1-2.
doi: 10.1016/0378-1127(90)90107-M |
[39] |
Liu X, Liang X, Li X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168: 94-116.
doi: 10.1016/j.landurbplan.2017.09.019 |
[40] |
Wang S, Zhang Y, Ju W, et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis[J]. Science, 2020, 370(6562): 1295-1300.
doi: 10.1126/science.abb7772 |
[41] | 李雪柔, 陈飞燕, 林爱文, 等. 基于随机森林回归的茶园扩张驱动机制分析[J]. 生态与农村环境学报, 2020, 36(1): 44-52. |
[Li Xuerou, Chen Feiyan, Lin Aiwen, et al. Analysis of the driving mechanism of tea plantation expansion based on random forest regression[J]. Journal of Ecology and Rural Environment, 2020, 36(1): 44-52.] |
[1] | 张顺鑫, 吴子豪, 闫庆武, 李桂娥, 牟守国. 基于PLUS-InVEST模型的天山北坡生态系统碳储量时空变化与预测[J]. 干旱区研究, 2024, 41(7): 1228-1237. |
[2] | 李冰洁, 范志韬, 曲芷程, 姚顺予, 宿夏姝, 刘东伟, 王立新. 基于InVEST-PLUS模型的黄河流域内蒙古段生态系统碳储量评价及预测[J]. 干旱区研究, 2024, 41(7): 1217-1227. |
[3] | 李沛尧, 王新军, 许世贤, 高胜寒, 薛智暄, 衡瑞. 基于PLUS土地利用模拟的阿克苏河流域NEP时空格局研究[J]. 干旱区研究, 2024, 41(6): 1059-1068. |
[4] | 李佳珂, 邵战林. 基于PLUS和InVEST模型的乌鲁木齐市碳储量时空演变与预测[J]. 干旱区研究, 2024, 41(3): 499-508. |
[5] | 苏泽琛, 邵战林. 干旱区土地利用变化对耕地空间的影响及预测——以昌吉市为例[J]. 干旱区研究, 2024, 41(11): 1936-1945. |
[6] | 何超禄,吕海深,朱永华,李文韬,谢冰绮,徐凯莉,刘名文. TIGGE降水预报在中国干旱半干旱地区的适用性评估[J]. 干旱区研究, 2022, 39(2): 368-378. |
[7] | 罗金明,王永洁,柏 林,刘复刚. 扎龙盐沼湿地旱化特征及其对演替的影响[J]. 干旱区研究, 2018, 35(5): 1167-1172. |
|