干旱区研究 ›› 2022, Vol. 39 ›› Issue (2): 560-571.doi: 10.13866/j.azr.2022.02.23
杨馥铖1(),刘昌义1,胡夏嵩1(),李希来2,付江涛3,卢海静2,申紫雁1,许桐1,闫聪1,何伟鹏1
收稿日期:
2021-08-25
修回日期:
2022-01-13
出版日期:
2022-03-15
发布日期:
2022-03-30
通讯作者:
胡夏嵩
作者简介:
杨馥铖(1998-),男,在读硕士,主要从事地质灾害及其防治等方面的研究. E-mail: 基金资助:
YANG Fucheng1(),LIU Changyi1,HU Xiasong1(),LI Xilai2,FU Jiangtao3,LU Haijing2,SHEN Ziyan1,XU Tong1,YAN Cong1,HE Weipeng1
Received:
2021-08-25
Revised:
2022-01-13
Online:
2022-03-15
Published:
2022-03-30
Contact:
Xiasong HU
摘要:
为研究黄河源区高寒草地退化对土体理化性质及根-土复合体抗剪强度影响,本研究以位于黄河源区青海河南县地区高寒草地为研究对象,通过开展不同退化程度草地野外取样及室内试验,获得土体密度、含水率、颗粒级配、土壤营养元素和植物根-土复合体抗剪强度指标及变化特征。结果表明:(1) 在相同退化程度和取样深度下,南旗村试验区土体平均密度为启龙牧场的1.02~1.29倍,土体含水率表现出随着草地退化程度加剧而降低;2个试验区土壤有机质、全氮、全磷等随着草地退化程度加剧而降低。(2) 区内根-土复合体抗剪强度随草地退化程度加剧而降低,启龙牧场与南旗村试验区其上层(0~10 cm)、下层(10~20 cm)降低幅度分别为72.05%、48.77%和77.26%、81.37%;进一步研究表明,根-土复合体所含根系数量和根系干重表现出随着草地退化程度加剧呈逐渐降低,启龙牧场与南旗村试验区其上层和下层的根-土复合体所含根系数量降低幅度分别为79.28%、75.93%和92.48%、39.59%。(3) 根据WWM模型和Pearson相关性分析结果可知,根系数量和营养元素含量减少对根-土复合体抗剪强度具有显著降低作用。本研究结果对于黄河源区高寒草地合理防治草地退化,以及水土流失、浅层滑坡等灾害具有实际指导意义。
杨馥铖,刘昌义,胡夏嵩,李希来,付江涛,卢海静,申紫雁,许桐,闫聪,何伟鹏. 黄河源区不同退化程度高寒草地理化性质及复合体抗剪强度研究[J]. 干旱区研究, 2022, 39(2): 560-571.
YANG Fucheng,LIU Changyi,HU Xiasong,LI Xilai,FU Jiangtao,LU Haijing,SHEN Ziyan,XU Tong,YAN Cong,HE Weipeng. Study on physical and chemical properties and shear strength characteristics of root-soil composite system with different degradation degrees of alpine grassland in the source region of the Yellow River[J]. Arid Zone Research, 2022, 39(2): 560-571.
表2
4种不同退化程度草地样方调查结果"
试验区 | 草地退化程度 | 优势草本植物类型 | 平均株高/cm | 植被覆盖度/% |
---|---|---|---|---|
启龙牧场 | 未退化 | 矮嵩草 | 11.02±4.16 | 98.20 |
轻度退化 | 矮嵩草 | 11.73±0.46 | 80.00 | |
中度退化 | 矮嵩草+细叶亚菊组合 | 12.90±3.65 | 63.33 | |
重度退化 | 密花香薷 | 4.00±1.35 | 20.00 | |
南旗村 | 未退化 | 矮嵩草+垂穗披碱草组合 | 29.20±20.97 | 100.00 |
轻度退化 | 矮嵩草 | 7.27±1.76 | 100.00 | |
中度退化 | 矮嵩草+垂穗披碱草组合 | 20.33±5.34 | 76.67 | |
重度退化 | 密花香薷为主且大部分退化为裸地 | 6.60±1.58 | 36.67 |
表3
4种不同退化程度草地土体物理性质"
试验区 | 退化程度 | 土体密度/(g·cm-3) | 土体含水率/% | |||
---|---|---|---|---|---|---|
上层 | 下层 | 上层 | 下层 | |||
启龙牧场 | 未退化 | 1.29±0.29 | 1.34±0.13 | 57.79±4.82 | 53.08±16.53 | |
轻度退化 | 1.07±0.04 | 1.25±0.05 | 56.82±5.25 | 44.39±12.50 | ||
中度退化 | 1.20±0.17 | 1.27±0.13 | 41.80±5.11 | 38.68±9.82 | ||
重度退化 | 1.19±0.10 | 1.35±0.17 | 39.41±3.58 | 33.79±18.69 | ||
南旗村 | 未退化 | 1.43±0.09 | 1.48±0.15 | 45.53±8.45 | 48.04±3.20 | |
轻度退化 | 1.38±0.10 | 1.45±0.12 | 38.85±4.17 | 32.64±1.33 | ||
中度退化 | 1.14±0.01 | 1.30±0.15 | 33.96±7.26 | 27.96±8.37 | ||
重度退化 | 1.21±0.15 | 1.35±0.10 | 29.87±1.04 | 28.55±1.64 |
表4
4种不同退化程度草地上层土体颗粒分析"
试验区 | 退化程度 | d60/mm | d30/mm | d10/mm | 不均匀系数Cu | 曲率系数Cc | 级配类型 | 土体类型 |
---|---|---|---|---|---|---|---|---|
启龙牧场 | 未退化 | 0.19 | 0.09 | 0.04 | 4.97 | 0.98 | 不良级配 | 砂类土 |
轻度退化 | 0.23 | 0.10 | 0.04 | 5.27 | 0.90 | 不良级配 | 砂类土 | |
中度退化 | 0.25 | 0.15 | 0.08 | 3.23 | 1.10 | 不良级配 | 砂类土 | |
重度退化 | 0.38 | 0.19 | 0.10 | 3.80 | 0.91 | 不良级配 | 砂类土 | |
南旗村 | 未退化 | 0.38 | 0.16 | 0.08 | 4.57 | 0.74 | 不良级配 | 砂类土 |
轻度退化 | 0.27 | 0.10 | 0.05 | 5.27 | 0.71 | 不良级配 | 砂类土 | |
中度退化 | 0.25 | 0.15 | 0.08 | 3.23 | 1.10 | 不良级配 | 砂类土 | |
重度退化 | 0.38 | 0.19 | 0.10 | 3.80 | 0.91 | 不良级配 | 砂类土 |
表5
4种不同退化程度草地上层土壤营养元素含量"
试验区 | 草地退化 程度 | pH | 有机质 /(g·kg-1) | 全N /(g·kg-1) | 全P2O5 /(g·kg-1) | 全K2O /(g·kg-1) | 碱解N /(mg·kg-1) | 速效P /(mg·kg-1) | 速效K /(mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
启龙牧场 | 未退化 | 7.11±0.25 | 119.54±38.23 | 6.96±1.90 | 1.67±0.10 | 20.47±2.45 | 381.67±70.23 | 4.40±3.50 | 147.33±71.50 |
轻度退化 | 7.37±0.56 | 115.80±26.42 | 7.00±1.31 | 1.60±0.11 | 20.55±1.42 | 339.67±89.53 | 1.97±0.35 | 325.33±85.01 | |
中度退化 | 7.37±1.18 | 106.08±46.95 | 6.69±2.06 | 1.81±0.35 | 19.69±1.96 | 341.67±62.52 | 2.30±0.26 | 206.00±38.69 | |
重度退化 | 7.97±0.39 | 104.17±46.16 | 6.68±2.24 | 1.78±0.23 | 20.30±1.41 | 295.00±31.95 | 2.30±0.26 | 197.00±41.07 | |
南旗村 | 未退化 | 7.22±0.41 | 93.22±20.09 | 5.79±0.76 | 1.72±0.16 | 25.01±2.37 | 333.33±55.37 | 2.20±0.52 | 262.33±101.15 |
轻度退化 | 7.90±0.52 | 59.16±4.09 | 4.27±0.24 | 1.52±0.13 | 24.70±2.52 | 252.00±6.93 | 2.67±0.97 | 199.00±31.58 | |
中度退化 | 8.00±0.36 | 64.36±9.35 | 4.34±0.68 | 1.51±0.10 | 26.22±4.72 | 217.00±70.06 | 2.47±0.15 | 172.00±35.04 | |
重度退化 | 7.75±0.10 | 60.08±6.59 | 3.83±0.14 | 1.40±0.08 | 25.01±1.04 | 214.33±30.53 | 1.93±0.38 | 150.33±38.11 |
表6
4种不同退化程度草地下层土壤营养元素含量"
试验区 | 草地退化程度 | pH | 有机质 /(g·kg-1) | 全N /(g·kg-1) | 全P2O5 /(g·kg-1) | 全K2O /(g·kg-1) | 碱解N /(mg·kg-1) | 速效P /(mg·kg-1) | 速效K /(mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
启龙牧场 | 未退化 | 7.45±0.25 | 73.99±10.32 | 5.13±0.58 | 1.58±0.32 | 22.64±1.30 | 238.67±16.17 | 3.40±1.42 | 147.33±89.27 |
轻度退化 | 7.95±0.2 | 70.68±15.61 | 5.45±1.73 | 1.41±0.19 | 20.91±0.90 | 263.67±81.82 | 2.10±0.10 | 289.33±106.8 | |
中度退化 | 7.55±1.06 | 70.87±13.39 | 4.91±1.16 | 1.53±0.16 | 20.90±1.89 | 241.00±75.72 | 2.27±0.06 | 177.33±95.93 | |
重度退化 | 8.17±0.09 | 69.59±11.43 | 5.00±1.00 | 1.47±0.18 | 20.54±0.49 | 259.00±48.54 | 1.97±0.40 | 245.67±87.05 | |
南旗村 | 未退化 | 7.42±0.41 | 83.16±35.95 | 5.05±1.61 | 1.68±0.33 | 23.75±4.30 | 279.67±109.16 | 2.10±0.62 | 99.33±6.35 |
轻度退化 | 7.87±0.51 | 55.89±4.05 | 3.98±0.26 | 1.40±0.11 | 24.38±2.18 | 220.67±11.72 | 1.83±0.31 | 145.00±50.23 | |
中度退化 | 8.12±0.33 | 58.99±10.78 | 4.06±0.57 | 1.46±0.13 | 21.84±1.87 | 203.67±62.68 | 3.07±2.20 | 122.67±53.12 | |
重度退化 | 8.19±0.17 | 57.83±6.64 | 3.86±0.33 | 1.38±0.04 | 25.62±0.95 | 212.67±19.76 | 1.87±0.15 | 97.67±14.36 |
表7
4种不同退化程度草地根-土复合体抗剪强度"
试验区 | 草地退化程度 | 平均黏聚力c值/kPa | 平均内摩擦角φ值/(°) | |||
---|---|---|---|---|---|---|
上层 | 下层 | 上层 | 下层 | |||
启龙牧场 | 未退化 | 26.94±3.31 | 39.45±14.10 | 20.52±1.87 | 17.60±4.98 | |
轻度退化 | 13.07±11.24 | 12.37±7.13 | 22.10±0.74 | 23.44±1.84 | ||
中度退化 | 13.42±2.39 | 8.63±4.15 | 21.35±2.75 | 23.29±0.80 | ||
重度退化 | 7.53±3.53 | 8.97±6.57 | 24.81±0.91 | 23.92±2.94 | ||
南旗村 | 未退化 | 26.43±4.51 | 24.69±4.91 | 21.92±2.23 | 20.79±0.68 | |
轻度退化 | 19.73±10.29 | 12.17±8.19 | 22.82±1.91 | 22.58±1.61 | ||
中度退化 | 6.83±6.79 | 5.09±3.25 | 24.69±1.05 | 26.06±1.40 | ||
重度退化 | 13.54±8.79 | 4.60±0.51 | 23.42±1.71 | 24.61±0.23 |
表8
4种不同退化程度草地植物根-土复合体试样根系含量"
试验区 | 草地退化程度 | 根数/根 | 干重/(g·cm-3) | 平均根径/mm | |||||
---|---|---|---|---|---|---|---|---|---|
上层 | 下层 | 上层 | 下层 | 上层 | 下层 | ||||
启龙牧场 | 未退化 | 253.33±70.24 | 90.00±17.32 | 11.31±4.47 | 2.57±0.46 | 0.37±0.12 | 0.27±0.06 | ||
轻度退化 | 307.50±239.91 | 102.50±40.31 | 9.42±6.32 | 2.26±2.52 | 0.26±0.13 | 0.22±0.05 | |||
中度退化 | 133.75±56.48 | 57.50±28.72 | 4.42±3.07 | 0.92±0.48 | 0.33±0.08 | 0.17±0.07 | |||
重度退化 | 52.50±17.08 | 40.00±14.14 | 0.85±0.17 | 0.50±0.16 | 0.33±0.10 | 0.19±0.03 | |||
南旗村 | 未退化 | 180.00±138.92 | 130.00±45.83 | 5.62±5.08 | 3.97±3.37 | 0.31±0.02 | 0.24±0.08 | ||
轻度退化 | 140.00±62.72 | 63.33±37.86 | 4.30±2.37 | 1.05±0.51 | 0.23±0.10 | 0.20±0.02 | |||
中度退化 | 91.67±40.72 | 48.33±27.54 | 2.20±1.40 | 0.67±0.53 | 0.28±0.07 | 0.20±0.02 | |||
重度退化 | 43.33±27.54 | 67.67±75.08 | 0.36±0.19 | 1.58±2.57 | 0.37±0.09 | 0.36±0.34 |
[1] | 徐田伟, 赵新全, 耿远月, 等. 黄河源区生态保护与草牧业发展关键技术及优化模式[J]. 资源科学, 2020, 42(3):508-516. |
[ Xu Tianwei, Zhao Xinquan, Geng Yuanyue, et al. Key technologies and optimization model for ecological protection and grass-based livestock husbandry in the source region of the Yellow River[J]. Resources Science, 2020, 42(3):508-516. ] | |
[2] | 索南江才. 青海省高原高寒草场退化机理及生态重建[J]. 农业工程技术, 2017, 37(29):36. |
[ Suonan Jiangcai. Degradation mechanism and ecological reconstruction of alpine grassland in Qinghai Province[J]. Agricultural Engineering Technology, 2017, 37(29):36. ] | |
[3] | 辛玉春. 浅议青海天然草地退化[J]. 青海草业, 2014, 23(2):46-53. |
[ Xin Yuchun. The degradation trend of natural grassland in Qinghai Province[J]. Qinghai Prataculture, 2014, 23(2):46-53. ] | |
[4] |
Liu Jiyuan, Xu Xinliang, Shao Quanqin. Grassland degradation in the “Three-River Headwaters” region, Qinghai Province[J]. Journal of Geographical Sciences, 2008, 18(3):259-273.
doi: 10.1007/s11442-008-0259-2 |
[5] | 李旭谦. 青海省退化草地治理与恢复的技术措施[J]. 青海科技, 2018, 25(6):34-39. |
[ Li Xuqian. Technical measures for the management and restoration of degraded grassland in Qinghai Province[J]. Qinghai Science and Technology, 2018, 25(6):34-39. ] | |
[6] | 宋明华, 刘丽萍, 陈锦, 等. 草地生态系统生物和功能多样性及其优化管理[J]. 生态环境学报, 2018, 27(6):1179-1188. |
[ Song Minghua, Liu Liping, Chen Jin, et al. Biology, multi-function and optimized management in grassland ecosystem[J]. Ecology and Environmental Sciences, 2018, 27(6):1179-1188. ] | |
[7] | 李世雄, 王玉琴, 王彦龙, 等. 黄河源区不同退化阶段高寒草甸植被特征[J]. 青海畜牧兽医杂志, 2020, 50(2):27-34. |
[ Li Shixiong, Wang Yuqin, Wang Yanlong, et al. Vegetation characteristics of alpine meadow in different degraded stages in Yellow River source region[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2020, 50(2):27-34. ] | |
[8] | 李旭谦, 杜铁瑛. 青海天然草地的不同退化程度[J]. 青海草业, 2015, 24(3):49-52. |
[ Li Xuqian, Du Tieying. Difference natural grassland degradation types in Qinghai Province[J]. Qinghai Prataculture, 2015, 24(3):49-52. ] | |
[9] | 张骞, 马丽, 张中华, 等. 青藏高寒区退化草地生态恢复: 退化现状、恢复措施、效应与展望[J]. 生态学报, 2019, 39(20):7441-7451. |
[ Zhang Qian, Ma Li, Zhang Zhonghua, et al. Ecological restoration of degraded grassland in Qinghai-Tibet alpine region: Degradation status, restoration measures, effects and prospects[J]. Acta Ecologica Sinica, 2019, 39(20):7441-7451. ] | |
[10] | Yang Pu, Werne Josef P, Meyers Philip A, et al. Organic matter geochemical signatures of sediments of Lake Ngoring (Qinghai-Tibetan Plateau): A record of environmental and climatic changes in the source area of the Yellow River for the last 1500 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 551:1-12. |
[11] |
Wang Rui, Dong Zhibao, Zhou Zhengchao. Different responses of vegetation to frozen ground degradation in the source region of the Yellow River from 1980 to 2018[J]. Chinese Geographical Science, 2020, 30(4):557-571.
doi: 10.1007/s11769-020-1135-y |
[12] | 付江涛, 李晓康, 刘昌义, 等. 基于统计理论的青海河南县地区5种草本植物根系力学特性研究[J]. 工程地质学报, 2020, 28(6):1147-1159. |
[ Fu Jiangtao, Li Xiaokang, Liu Changyi, et al. Statistics of mechanical characteristics of five herb roots standing in Henan region of Qinghai Province[J]. Journal of Engineering Geology, 2020, 28(6):1147-1159. ] | |
[13] | 李国荣, 李希来, 陈文婷, 等. 黄河源区退化草地水土流失规律[J]. 水土保持学报, 2017, 31(5):51-55, 63. |
[ Li Guorong, Li Xilai, Chen Wenting, et al. Experimental study on soil erosion rule of degraded grassland in source area of the Yellow River[J]. Journal of Soil and Water Conservation, 2017, 31(5):51-55, 63. ] | |
[14] | 郝爱华, 薛娴, 彭飞, 等. 青藏高原典型草地植被退化与土壤退化研究[J]. 生态学报, 2020, 40(3):964-975. |
[ Hao Aihua, Xue Xian, Peng Fei, et al. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2020, 40(3):964-975. ] | |
[15] | 张光茹, 李红琴, 杨永胜, 等. 基于主成分分析对退化高寒草甸不同恢复方式下草地质量的综合评价[J]. 中国草地学报, 2020, 42(2):76-82. |
[ Zhang Guangru, Li Hongqin, Yang Yongsheng, et al. Comprehensive evaluation of grassland quality under different restoration methods in degraded alpine meadow based on principal component analysis[J]. Chinese Journal of Grassland, 2020, 42(2):76-82. ] | |
[16] | 高露, 张圣微, 赵鸿彬, 等. 退化草原土壤理化性质空间异质性及其对土壤水分的影响[J]. 干旱区研究, 2020, 37(3):607-617. |
[ Gao Lu, Zhang Shengwei, Zhao Hongbin, et al. Spatial heterogeneity of soil physical and chemical properties in degraded grassland and their effect on soil moisture[J]. Arid Zone Research, 2020, 37(3):607-617. ] | |
[17] | 马俊梅, 郭春秀, 肖斌, 等. 民勤黑果枸杞形态学特征与土壤因子的关系[J]. 干旱区研究, 2020, 37(2):444-451. |
[ Ma Junmei, Guo Chunxiu, Xiao Bin, et al. Relationship between morphological characteristics of Lycium ruthenicum and soil factors in Minqin, Gansu, Northwest China[J]. Arid Zone Research, 2020, 37(2):444-451. ] | |
[18] |
Yuan Ziqiang, Jiang Xiaojin, Liu Guojun, et al. Responses of soil organic carbon and nutrient stocks to human-induced grassland degradation in a Tibetan alpine meadow[J]. Catena, 2019, 178:40-48.
doi: 10.1016/j.catena.2019.03.001 |
[19] | Liu Chenli, Li Wenlong, Xu Jing, et al. Response of soil nutrients and stoichiometry to grazing management in alpine grassland on the Qinghai-Tibet Plateau[J]. Soil and Tillage Research, 2021, 206:1-10. |
[20] | Ma Li, Wang Qing, Shen Songtao. Response of soil aggregate stability and distribution of organic carbon to alpine grassland degradation in Northwest Sichuan[J]. Geoderma Regional, 2020, 22:1-7. |
[21] | Sun Jinjin, Wang Pengbin, Wang Haibo, et al. Changes in plant communities, soil characteristics, and microbial communities in alpine meadows degraded to different degrees by pika on the Qinghai-Tibetan Plateau[J]. Global Ecology and Conservation, 2021, 27:1-16. |
[22] | 王婷, 花蕊, 楚彬, 等. 高寒草原退化对植物群落及土壤理化性质的影响[J]. 草原与草坪, 2019, 39(4):65-71. |
[ Wang Ting, Hua Rui, Chu Bin, et al. Effects of alpine steppe degradation on plant communities and soil physical and chemical properties[J]. Grassland and Turf, 2019, 39(4):65-71. ] | |
[23] | 刘昌义, 胡夏嵩, 李希来, 等. 黄河源区高寒草地根-土复合体抗剪强度与土壤营养元素分布关系[J]. 山地学报, 2020, 38(3):349-359. |
[ Liu Changyi, Hu Xiasong, Li Xilai, et al. Relationship between shear strength of root-soil composite systems of alpine grassland and distribution of soil nutrient elements in the source region of the Yellow River, China[J]. Mountain Research, 2020, 38(3):349-359. ] | |
[24] | 周林虎, 杨幼清, 胡夏嵩, 等. 高寒矿区排土场边坡土体抗剪强度特征[J]. 煤田地质与勘探, 2019, 47(6):144-152. |
[ Zhou Linhu, Yang Youqing, Hu Xiasong, et al. Shear strength characteristics of slope soil in dumping site in high-cold mining area[J]. Coal Geology & Exploration, 2019, 47(6):144-152. ] | |
[25] | 刘昌义, 窦增宁, 胡夏嵩, 等. 黄河源区高寒草地植物组合对根-土复合体抗剪强度的影响[J]. 草地学报, 2019, 27(1):43-52. |
[ Liu Changyi, Dou Zengning, Hu Xiasong, et al. Research on the effect of plant combination types on the shear strength of the root-soil composite system of alpine grassland in the source region of the Yellow River[J]. Acta Agrestia Sinica, 2019, 27(1):43-52. ] | |
[26] | 杨幼清, 胡夏嵩, 李希来, 等. 高寒矿区草本植物根系增强排土场边坡土体抗剪强度试验研究[J]. 水文地质工程地质, 2018, 45(6):105-113. |
[ Yang Youqing, Hu Xiasong, Li Xilai, et al. An experimental study of the soil shear strength reinforcement of a mine dump slope by herbaceous root systems in alpine regions[J]. Hydrogeology and Engineering Geology, 2018, 45(6):105-113. ] | |
[27] | Li Guorong, Li Xilai, Chen Wenting, et al. Effects of degradation severity on the physical, chemical and mechanical properties of topsoil in alpine meadow on the Qinghai-Tibet Plateau, West China[J]. Catena, 2020, 187:1-9. |
[28] | 申紫雁, 刘昌义, 胡夏嵩, 等. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究[J]. 干旱区研究, 2021, 38(2):392-401. |
[ Shen Ziyan, Liu Changyi, Hu Xiasong, et al. Relationships between the physical and chemical properties of soil and the shear strength of root-soil composite systems at different soil depths in alpine grassland in the source region of the Yellow River[J]. Arid Zone Research, 2021, 38(2):392-401. ] | |
[29] | 刘昌义, 胡夏嵩, 窦增宁, 等. 黄河源区高寒草地植被根-土复合体抗剪强度试验及退化程度阈值确定[J]. 草业学报, 2017, 26(9):14-26. |
[ Liu Changyi, Hu Xiasong, Dou Zengning, et al. Shear strength tests of the root-soil composite system of alpine grassland vegetation at different stages of degradation and the determination of thresholds in the Yellow River source region[J]. Acta Prataculturae Sinica, 2017, 26(9):14-26. ] | |
[30] | 王伟, 郭倩, 康海军, 等. 线叶嵩草草地群落构成及种间关联分析[J]. 西北植物学报, 2015, 35(10):2096-2102. |
[ Wang Wei, Guo Qian, Kang Haijun, et al. Community composition and interspecific association analysis of Kobresia capillifolia grassland[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(10):2096-2102. ] | |
[31] | 才让措. 河南县林业资源保护和森林防火管理措施探讨[J]. 农业灾害研究, 2020, 10(6):173-174, 191. |
[ Cai Rangcuo. Discussion on forest resources protection and forest fire prevention management measures in Henan County[J]. Journal of Agricultural Catastrophology, 2020, 10(6):173-174, 191. ] | |
[32] | 刘兴波, 格根图, 孙林, 等. 不同退化梯度上草甸草原植物群落养分的对应分析[J]. 畜牧兽医学报, 2014, 45(9):1467-1473. |
[ Liu Xingbo, Ge Gentu, Sun Lin, et al. Correspondence analysis of plant community nutrient content of meadow grassland on the different degradation gradient[J]. Acta Veterinaria Et Zootechnica Sinica, 2014, 45(9):1467-1473. ] | |
[33] | 许桐, 刘昌义, 胡夏嵩, 等. 柴达木盆地4种盐生植物根系力学特性及根-土复合体抗剪强度研究[J]. 水土保持研究, 2021, 28(3):101-110. |
[ Xu Tong, Liu Changyi, Hu Xiasong, et al. Study on the mechanical properties of roots and the shear strengths of four halophytic plants in Qaidam Basin[J]. Research of Soil and Water Conservation, 2021, 28(3):101-110. ] | |
[34] |
Fredlund D G, Morgensterm N R, Widger R A. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978, 15(3):313-321.
doi: 10.1139/t78-029 |
[35] |
Waldron L J. The shear resistance of root permeated homogeneous sands tratified[J]. Soil Science Society of America Journal, 1977, 41(5):843-849.
doi: 10.2136/sssaj1977.03615995004100050005x |
[36] |
Wu T H, Mckinnell W P, Swanston D N. Strength of tree roots and landslides on prince of Wales Island, Alaska[J]. Canadian Geotechnical Journal, 1979, 16(1):19-33.
doi: 10.1139/t79-003 |
[37] | 徐宗恒, 黄丽苹, 杨正辉, 等. 不同根系含量对山原红壤抗剪强度的影响[J]. 水土保持通报, 2019, 39(5):54-59, 66. |
[ Xu Zongheng, Huang Liping, Yang Zhenghui, et al. Influence of different root contents on shear strength of mountain red earth[J]. Bulletin of Soil and Water Conservation, 2019, 39(5):54-59, 66. ] | |
[38] | Murielle Ghestem, Guillaume Veylon, Alain Bernard, et al. Influence of plant root system morphology and architectural traits on soil shear resistance[J]. Plant & Soil, 2014, 377(1-2):43-61. |
[39] | 潘天辉, 杜峰, 王月. 陕北黄土区护坡植物根系分布和抗剪增强分析[J]. 水土保持研究, 2020, 27(3):357-363, 371. |
[ Pan Tianhui, Du Feng, Wang Yue. Analysis of root distributions and shear strengths of slope protection plants in the loess region of northern Shaanxi[J]. Research of Soil and Water Conservation, 2020, 27(3):357-363, 371. ] | |
[40] | 李佳, 汪霞, 贾海霞, 等. 浅层滑坡多发区典型灌木根系对边坡土体抗剪强度的影响[J]. 生态学报, 2019, 39(14):5117-5126. |
[ Li Jia, Wang Xia, Jia Haixia, et al. Ecological restoration with shrub roots for slope reinforcement in a shallow landslide-prone region[J]. Acta Ecologica Sinica, 2019, 39(14):5117-5126. ] | |
[41] | 樊博, 林丽, 曹广民, 等. 不同演替状态下高寒草甸土壤物理性质与植物根系的相互关系[J]. 生态学报, 2020, 40(7):2300-2309. |
[ Fan Bo, Lin Li, Cao Guangming, et al. Relationship between plant roots and physical soil properties in alpine meadows at different degradation stages[J]. Acta Ecologica Sinica, 2020, 40(7):2300-2309. ] | |
[42] | 范燕敏, 朱进忠, 武红旗, 等. 北疆蒿类荒漠草地退化对土壤理化特性的影响[J]. 土壤通报, 2009, 40(4):917-920. |
[ Fan Yanmin, Zhu Jinzhong, Wu Hongqi, et al. Influence of Seriphidium transillense desert grassland degradation on soil physicochemical properties in northern Xinjiang[J]. Chinese Journal of Soil Science, 2009, 40(4):917-920. ] | |
[43] | 秦嘉海, 张勇, 赵芸晨, 等. 祁连山黑河上游不同退化草地土壤理化性质及养分和酶活性的变化规律[J]. 冰川冻土, 2014, 36(2):335-346. |
[ Qin Jiahai, Zhang Yong, Zhao Yuncheng, et al. Soil physicochemical properties and variations of nutrients and enzyme activity in the degrading grasslands in the upper reaches of the Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(2):335-346. ] | |
[44] | 王婷, 张永超, 赵之重. 青藏高原退化高寒湿地植被群落结构和土壤养分变化特征[J]. 草业学报, 2020, 29(4):9-18. |
[ Wang Ting, Zhang Yongchao, Zhao Zhizhong. Characteristics of the vegetation community and soil nutrient status in a degraded alpine wetland of Qinghai-Tibet Plateau[J]. Acta Prataculturae Sinica, 2020, 29(4):9-18. ] | |
[45] | 慕军鹏, 付荣华, 谭露. 不同退化演替阶段高寒草甸土壤理化性质对功能群植物地上生物量的影响[J]. 草学, 2018(2):41-47. |
[ Mu Junpeng, Fu Ronghua, Tan Lu. Effects of soil physical and chemical properties on above-ground biomass of functional groups at different degradation successional stages of alpine meadows[J]. Journal of Grassland and Forage Science, 2018(2):41-47.] | |
[46] | 张振超. 青藏高原典型高寒草地地上-地下的退化过程和禁牧恢复效果研究[D]. 北京: 北京林业大学, 2020. |
[ Zhang Zhenchao. The Above-and Below-Ground Processes of Degradation and Restoring Efficiency of Grazing Exclusion in Typical Alpine Grasslands on the Tibetan Plateau[D]. Beijing: Beijing Forestry University, 2020. ] |
[1] | 李娟, 刘阳, 刘光琇, 程亮, 郭青云, 张威, 章高森. 鄯善库木塔格沙漠北缘细菌群落结构特征及影响因素[J]. 干旱区研究, 2023, 40(8): 1358-1368. |
[2] | 赵剑, 邓成军, 李文利, 赵金, 公延明, 李凯辉. 近35 a新疆天山巴音布鲁克草原退化程度评价[J]. 干旱区研究, 2023, 40(4): 636-646. |
[3] | 杨航,侯景伟,马彩虹,杨晨,王彦卷. 黄河上游生态脆弱区复合生态系统韧性时空分异——以宁夏为例[J]. 干旱区研究, 2023, 40(2): 303-312. |
[4] | 牛子路, 王磊, 齐拓野, 张伊婧, 申建香, 杨竹青, 王恩田, 蒋淑汀. 宁夏红寺堡扬黄灌区土壤盐渍化特征[J]. 干旱区研究, 2023, 40(11): 1785-1796. |
[5] | 张曼玉, 王志涛, 邓磊, 周虹. 共和盆地不同灌木群落生物土壤结皮理化性质差异[J]. 干旱区研究, 2023, 40(11): 1797-1805. |
[6] | 刘国松, 朱海丽, 张玉, 刘亚斌, 李国荣. 冻融作用对黄河源区曲流河岸土体抗剪特性的影响[J]. 干旱区研究, 2023, 40(10): 1637-1643. |
[7] | 翟辉,李国荣,李进芳,朱海丽,赵健赟,刘亚斌,陈文婷,胡夏嵩. 黄河源草地退化区2种鼠丘土壤风蚀规律[J]. 干旱区研究, 2022, 39(4): 1212-1221. |
[8] | 赵晨光,李慧瑛,鱼腾飞,陈薇宇,谢宗才,张斌武,张军. 腾格里沙漠东北缘人工植被对土壤物理性质的影响[J]. 干旱区研究, 2022, 39(4): 1112-1121. |
[9] | 程梦园,曹广超,赵美亮,刁二龙,何启欣,高斯远,邱巡巡,程国. 香日德-柴达木河流域土壤湿度时空变化特征及其影响因素[J]. 干旱区研究, 2022, 39(2): 615-624. |
[10] | 马小梅,杜秉晨曦,程勇翔,吴玲. 准噶尔盆地植被变化趋势及相关因素分析[J]. 干旱区研究, 2021, 38(5): 1401-1410. |
[11] | 杨昌钰,张芮,蔺宝军,董博,高彦婷,李红霞,张彩霞,王喜红. 水分胁迫对设施延迟栽培葡萄根际土壤有机氮及土壤酶活性的影响[J]. 干旱区研究, 2021, 38(5): 1376-1384. |
[12] | 胡亚伟,孙若修,申明爽,施政乐,刘畅,徐勤涛,刘俊廷,张建军. 晋西黄土区土地利用方式对土壤C:N:P化学计量特征及土壤理化性质的影响[J]. 干旱区研究, 2021, 38(4): 990-999. |
[13] | 申紫雁,刘昌义,胡夏嵩,周林虎,许桐,李希来,李国荣. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究[J]. 干旱区研究, 2021, 38(2): 392-401. |
[14] | 刘小娥,苏世平,李毅,王维. 黄土高原地区人工林营造——混交林模式生态效益研究[J]. 干旱区研究, 2021, 38(2): 380-391. |
[15] | 刘彩红,王朋岭,温婷婷,余迪,白文蓉. 1960—2019年黄河源区气候变化时空规律研究[J]. 干旱区研究, 2021, 38(2): 293-302. |
|