干旱区研究 ›› 2025, Vol. 42 ›› Issue (5): 810-819.doi: 10.13866/j.azr.2025.05.04 cstr: 32277.14.AZR.20250504
吴绍雄1(
), 马登科2,3, 陈昆1, 计桂平1, 何志斌2(
)
收稿日期:2024-11-21
修回日期:2025-02-08
出版日期:2025-05-15
发布日期:2025-10-22
通讯作者:
何志斌. E-mail: hzbmail@lzb.ac.cn作者简介:吴绍雄(1999-),男,硕士研究生,主要从事干旱区生态水文研究. E-mail: wsx991215@163.com
基金资助:
WU Shaoxiong1(
), MA Dengke2,3, CHEN Kun1, JI Guiping1, HE Zhibin2(
)
Received:2024-11-21
Revised:2025-02-08
Published:2025-05-15
Online:2025-10-22
摘要:
宇宙射线中子技术(Cosmic-Ray Neutron Technology,CRNT)是反演百米范围土壤墒情的新手段,在生态、农业、水文和气象领域应用前景广阔。该技术联合移动设备可实现土壤水分“升尺度”监测,更好地服务现代化大型农林牧场的生产活动。本研究基于移动式CRNT在宁夏灵武白芨滩国家级自然保护区开展区域尺度土壤墒情观测试验,选择14个大样地采集378份土样用于中子强度率定和土壤水分验证。研究区内根据测得的中子强度,经大气压强、空气湿度和入射中子强度校正后,最终率定中子强度N0为375 cpm,验证结果表明CRNT土壤水分测量精度较高,其均方根误差(Root Mean Square Error,RMSE)=0.01 g·g-1,CRNT适用于干旱区土壤墒情监测。在研究区内反演的土壤水分介于0~0.15 g·g-1,将宇宙射线中子仪有效探测深度范围内的土壤水分转化为土壤水资源储量,该区域0~30 cm土壤水资源储量约27.1 mm,靠近水库湖泊或植被茂密区测得的土壤水分偏大。本研究能丰富区域土壤水资源评估手段,为干旱区陆地表层生态系统的科学研究提供技术参考。
吴绍雄, 马登科, 陈昆, 计桂平, 何志斌. 基于移动式宇宙射线中子技术的区域尺度土壤墒情监测研究[J]. 干旱区研究, 2025, 42(5): 810-819.
WU Shaoxiong, MA Dengke, CHEN Kun, JI Guiping, HE Zhibin. Study on region-scale soil moisture measurements using mobile cosmic-ray neutron technology[J]. Arid Zone Research, 2025, 42(5): 810-819.
表1
研究区14个样地中子强度校正和率定结果"
| 样地 序号 | 经度 | 纬度 | P /hPa | RH /(g·m-3) | RC /GV | I /cpm | /(g·cm-3) | Nraw /cpm | N /cpm | N0 /cpm |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 106°26′E | 38°01′N | 882.98 | 5.61 | 9.61 | 219 | 1.50 | 800 | 328 | 381 |
| 2 | 106°27′E | 37°58′N | 875.53 | 5.18 | 9.67 | 221 | 1.50 | 876 | 337 | 386 |
| 3 | 106°26′E | 37°57′N | 877.12 | 6.92 | 9.67 | 221 | 1.51 | 876 | 343 | 388 |
| 4 | 106°25′E | 37°58′N | 883.02 | 9.28 | 9.67 | 218 | 1.51 | 736 | 309 | 353 |
| 5 | 106°24′E | 37°58′N | 883.02 | 8.94 | 9.67 | 219 | 1.54 | 844 | 353 | 389 |
| 6 | 106°26′E | 37°59′N | 881.06 | 8.26 | 9.64 | 219 | 1.52 | 784 | 322 | 365 |
| 7 | 106°26′E | 37°58′N | 880.91 | 8.20 | 9.66 | 219 | 1.51 | 802 | 328 | 369 |
| 8 | 106°29′E | 38°03′N | 877.82 | 8.01 | 9.61 | 219 | 1.53 | 848 | 339 | 377 |
| 9 | 106°29′E | 37°59′N | 876.64 | 9.89 | 9.66 | 219 | 1.51 | 768 | 308 | 373 |
| 10 | 106°32′E | 38°02′N | 866.75 | 9.03 | 9.64 | 219 | 1.45 | 816 | 302 | 373 |
| 11 | 106°33′E | 38°03′N | 864.92 | 9.08 | 9.61 | 219 | 1.50 | 880 | 322 | 369 |
| 12 | 106°24′E | 38°01′N | 881.44 | 9.12 | 9.64 | 219 | 1.53 | 816 | 337 | 371 |
| 13 | 106°29′E | 38°01′N | 875.44 | 8.85 | 9.63 | 220 | 1.51 | 854 | 336 | 378 |
| 14 | 106°28′E | 37°55′N | 868.69 | 9.01 | 9.70 | 220 | 1.47 | 858 | 321 | 382 |
| 平均值 | 106°28′E | 37°59′N | 876.81 | 8.24 | 9.65 | 219 | 1.51 | 826 | 327 | 375 |
| [1] | Baatz R, Bogena H R, Franssen H H, et al. Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods[J]. Journal of Hydrology, 2014, 516: 231-244. |
| [2] | Brunetti G J, Šimůnek H, Bogena R, et al. On the information content of cosmic-ray neutron data in the inverse estimation of soil hydraulic properties[J]. Vadose Zone Journal, 2019, 18(1): 1-24. |
| [3] |
蒋一飞, 李晓鹏, 宣可凡, 等. 宇宙射线中子法在农田土壤水分监测中的适用性[J]. 应用生态学报, 2022, 33(4): 909-914.
doi: 10.13287/j.1001-9332.202204.020 |
|
[Jiang Yifei, Li Xiaopeng, Xuan Kefan, et al. Applicability of cosmic-ray neutron sensing for monitoring soil moisture in farmland[J]. Chinese Journal of Applied Ecology, 2022, 33(4): 909-914.]
doi: 10.13287/j.1001-9332.202204.020 |
|
| [4] | Vather T, Everson C, Mengistu M, et al. Cosmic ray neutrons provide an innovative technique for estimating intermediate scale soil moisture[J]. South African Journal of Science, 2019, 114(7/8): 79-87. |
| [5] | Bindlish R, Barros A P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation[J]. Remote Sensing of Environment, 2001, 76(1): 130-137. |
| [6] | Nguyen H H, Kim H, Choi M. Evaluation of the soil water content using cosmic-ray neutron probe in a heterogeneous monsoon climate-dominated region[J]. Advances in Water Resources, 2017, 108(10): 125-138. |
| [7] |
吴绍雄, 张勇勇, 赵文智, 等. 基于COSMIC模型的宇宙射线中子反演荒漠-绿洲区土壤水分[J]. 应用生态学报, 2023, 34(9): 2445-2452.
doi: 10.13287/j.1001-9332.202309.023 |
|
[Wu Shaoxiong, Zhang Yongyong, Zhao Wenzhi, et al. Retrieving soil moisture using cosmic-ray neutron technology based on COSMIC model in the desert-oasis region[J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2445-2452.]
doi: 10.13287/j.1001-9332.202309.023 |
|
| [8] | Zreda M, Shuttleworth W J, Zeng X, et al. COSMOS: The cosmic-ray soil moisture observing system[J]. Hydrology and Earth System Sciences, 2012, 16(11): 4079-4099. |
| [9] | Köhli M, Schrön M, Zreda M, et al. Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons[J]. Water Resources Research, 2015, 51(7): 5772-5790. |
| [10] | Rosolem R, Shuttleworth W J, Zreda M, et al. The effect of atmospheric water vapor on neutron count in the cosmic-ray soil moisture observing system[J]. Journal of Hydrometeorology, 2013, 14(5): 1659-1671. |
| [11] | Hawdon A, McJannet D, Wallace J. Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia[J]. Water Resources Research, 2014, 50(6): 5029-5043. |
| [12] | Desilets D, Zreda M, Ferré T P A. Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays[J]. Water Resources Research, 2010, 46(11): 008726. |
| [13] | Franz T E, Zreda M, Rosolem R, et al. A universal calibration function for determination of soil moisture with cosmic-ray neutrons[J]. Hydrology and Earth System Sciences, 2013, 17(2): 453-460. |
| [14] | Shuttleworth J, Rosolem R, Zreda M, et al. The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation[J]. Hydrology and Earth System Sciences, 2013, 17(8): 3205-3217. |
| [15] | Han X, Rui J, Xin L, et al. Soil moisture estimation using cosmic-ray soil moisture sensing at heterogeneous farmland[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1659-1663. |
| [16] | Evans J G, Ward H C, Blake J R, et al. Soil water content in southern England derived from a cosmic-ray soil moisture observing system-cosmos-UK[J]. Hydrological Processes, 2016, 30(26): 4987-4999. |
| [17] | 赵原, 李晓鹏, 纪景纯, 等. 宇宙射线中子法在土壤水分监测研究中的应用进展[J]. 生态与农村环境学报, 2019, 35(5): 545-553. |
| [Zhao Yuan, Li Xiaopeng, Ji Jingchun, et al. Advances in soil moisture monitoring using cosmic ray neutron probe method[J]. Journal of Ecology and Rural Environment, 2019, 35(5): 545-553.] | |
| [18] | 武强, 贺开利, 罗孳孳, 等. 宇宙射线中子法在复杂下垫面土壤水分测量中的应用[J]. 中国农业气象, 2020, 41(1): 34-42. |
| [Wu Qiang, He Kaili, Luo Zizi, et al. Application of cosmic-ray neutron method in soil moisture measurement on complex underlying surface[J]. Chinese Journal of Agrometeorology, 2020, 41(1): 34-42.] | |
| [19] | 石耀辉, 王海龙, 朱永超, 等. 宇宙射线中子法土壤水分监测在不同生态系统雨季的适用性[J]. 气象科技, 2024, 52(1): 1-9. |
| [Shi Yaohui, Wang Hailong, Zhu Yongchao, et al. Suitability of cosmic ray neutron probe for soil moistrue in different ecosystems during rainy season[J]. Meteorological Science and Technology, 2024, 52(1): 1-9.] | |
| [20] | Foolad F, Franz T E, Wang T J, et al. Feasibility analysis of using inverse modeling for estimating field-scale evapotranspiration in maize and soybean fields from soil water content monitoring networks[J]. Hydrology and Earth System Sciences, 2017, 21(2): 1263-1277. |
| [21] | Schattan P, Baroni G, Oswald S E, et al. Continuous monitoring of snowpack dynamics in alpine terrain by aboveground neutron sensing[J]. Water Resources Research, 2017, 53(5): 3615-3634. |
| [22] | Bogena H R, Herrmann F, Jakobi J, et al. Monitoring of snowpack dynamics with cosmic-ray neutron probes: A comparison of four conversion methods[J]. Frontiers in Water, 2020, 2(8): 19. |
| [23] | Montzka C, Bogena H R, Zreda M, et al. Validation of spaceborne and modelled surface soil moisture products with cosmic-ray neutron probes[J]. Remote Sensing, 2017, 9(2): 103. |
| [24] | Mwangi S, Zeng Y, Montzka C, et al. Assimilation of cosmic-ray neutron counts for the estimation of soil ice content on the eastern Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(3): 031529. |
| [25] | 赵纯, 袁国富, 刘晓, 等. 宇宙射线土壤水分观测方法在黄土高原草地植被的应用[J]. 土壤学报, 2015, 52(6): 1438-1444. |
| [Zhao Chun, Yuan Guofu, Liu Xiao, et al. Application of cosmic-ray method to soil moisture measurement of grassland in the Loess Plateau[J]. Acta Pedologica Sinica, 2015, 52(6): 1438-1444.] | |
| [26] | 谈幸燕, 张兰慧, 贺缠生, 等. 宇宙射线中子法在西北农牧交错带土壤水分测量中的适用性研究[J]. 中国科学:地球科学, 2020, 50(11): 1596-1610. |
| [Tan Xingyan, Zhang Lanhui, He Chansheng, et al. Applicability of cosmic-ray neutron sensor for measuring soil moisture at the agricultural-pastoral ecotone in Northwest China[J]. Science China Earth Sciences, 2020, 50(11): 1596-1610.] | |
| [27] |
彭书艳, 赵龙, 李婷婷, 等. 基于宇宙射线观测的喀斯特槽谷区典型流域土壤水分反演研究[J]. 遥感技术与应用, 2021, 36(5): 997-1008.
doi: 10.11873/j.issn.1004-0323.2021.5.0997 |
| [Peng Shuyan, Zhao Long, Li Tingting, et al. Retrieval of cosmic-ray-based soil moisture over a typical karst watershed[J]. Remote Sensing Technology and Application, 2021, 36(5): 997-1008.] | |
| [28] | Zhu X, Cao R, Shao M, et al. Footprint radius of a cosmic-ray neutron probe for measuring soil-water content and its spatiotemporal variability in an alpine meadow ecosystem[J]. Journal of Hydrology, 2018, 558: 1-8. |
| [29] | Wang Q M, Fan J, Wang S, et al. Application and accuracy of cosmic-ray neutron probes in three soil textures on the Loess Plateau, China[J]. Journal of Hydrology, 2019, 569(2): 449-461. |
| [30] | Altdorff D, Oswald S E, Zacharias S, et al. Toward large-scale soil moisture monitoring using rail-based cosmic ray neutron sensing[J]. Water Resources Research, 2023, 59(3): 033514. |
| [31] | 王兴东. 宁夏灵武白芨滩国家级自然保护区综合科学考察报告[M]. 北京: 中国林业出版社, 2018. |
| [Wang Xingdong. Comprehensive Scientific Pilot Report on Baijitan National Nature Reserve in Lingwu, Ningxia[M]. Beijing: China Forestry Publishing House, 2018.] | |
| [32] | 余琦殷, 宋超. 宁夏灵武白芨滩自然保护区植被覆盖变化地形效应[J]. 生态科学, 2022, 41(2): 91-98. |
| [Yu Qiyin, Song Chao. The response of dynamic change in vegetation coverage to topography in Baijitan National Nature Reserve in Lingwu, Ningxia[J]. Ecological Science, 2022, 41(2): 91-98.] | |
| [33] | 宋超, 余琦殷, 王瑞霞, 等. 宁夏灵武白芨滩国家级自然保护区防风固沙功能辐射效益[J]. 北京林业大学学报, 2022, 44(7): 78-89. |
| [Song Chao, Yu Qiyin, Wang Ruixia, et al. Radiation effects of windbreak and sand fixation function in Baijitan National Nature Reserve, Lingwu, Ningxia of northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(7): 78-89.] | |
| [34] | Dong J, Ochsner T E. Soil texture often exerts a stronger influence than precipitation on mesoscale soil moisture patterns[J]. Water Resources Research, 2018, 54(3): 2199-2211. |
| [35] | Zhang Y Y, Zhao W Z, Li X B, et al. Contribution of soil macropores to water infiltration across different land use types in a desert-oasis ecoregion[J]. Land Degradation & Development, 2021, 32(4): 1751-1760. |
| [36] | Desilets D, Zreda M, Prabu T. Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude[J]. Earth and Planetary Science Letters, 2006, 246(3): 265-276. |
| [37] | Franz T E, Zreda M, Ferre T P A, et al. Measurements depth of the cosmic ray soil moisture probe affected by hydrogen from various sources[J]. Water Resources Research, 2012, 48(8): 011871. |
| [38] | Schrön M, Köhli M, Scheiffele L, et al. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity[J]. Hydrology and Earth System Sciences, 2017, 21(10): 5009-5030. |
| [39] | Baroni G, Scheiffele L M, Schrönc M, et al. Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing[J]. Journal of Hydrology, 2018, 564: 873-887. |
| [40] | Jakobi J, Huisman J A, Vereecken H, et al. Cosmic ray neutron sensing for simultaneous soil water content and biomass quantification in drought conditions[J]. Water Resources Research, 2018, 54(10): 7383-7402. |
| [41] | Franz T E, Zreda M, Rosolem R, et al. Ecosystem-scale measurements of biomass water using cosmic ray neutrons[J]. Geophysical Research Letters, 2013, 40(15): 3929-3933. |
| [42] | Coopersmith E J, Cosh M H, Daughtry C S T. Field-scale moisture estimates using cosmos sensors: A validation study with temporary networks and leaf-area-indices[J]. Journal of Hydrology, 2014, 519: 637-643. |
| [43] | Wu S X, Zhang Y Y, Kang W R. Employing NDVI as vegetation correction variable to improve soil moisture measurements of mobile cosmic-ray neutron sensor near the Qilian Mountains[J]. Geoderma, 2024, 441: 116764. |
| [44] | McJannet D, Franz T, Hawdon A, et al. Field testing of the universal calibration function for determination of soil moisture with cosmic-ray neutrons[J]. Water Resources Research, 2014, 50(6): 5235-5248. |
| [45] | Baroni G, Oswald S E. A scaling approach for the assessment of biomass changes and rainfall interception using cosmic-ray neutron sensing[J]. Journal of Hydrology, 2015, 525: 264-276. |
| [46] | Heidbüchel I, Güntner A, Blume T. Use of cosmic-ray neutron sensors for soil moisture monitoring in forests[J]. Hydrology and Earth System Sciences, 2016, 20(3): 1269-1288. |
| [47] | Schrön M, Rosolem R, Köhli M, et al. Cosmic-ray neutron rover surveys of field soil moisture and the influence of roads[J]. Water Resources Research, 2018, 54(9): 6441-6459. |
| [1] | 刘玥, 郭强, 袁立敏, 党晓宏, 蒙仲举, 董菁. 三种植物基固沙剂对风沙土水分入渗和蒸发的影响[J]. 干旱区研究, 2025, 42(4): 658-667. |
| [2] | 宋海清, 皇彦, 孙小龙. 五套土壤质地对IMLDAS表层土壤水分模拟的适用性[J]. 干旱区研究, 2025, 42(10): 1813-1827. |
| [3] | 杨竹青, 王磊, 张雪, 申建香, 张伊婧, 李欣宇, 张波, 牛金帅. 典型固沙植物种子萌发和幼苗生长对土壤水分的响应[J]. 干旱区研究, 2024, 41(5): 830-842. |
| [4] | 胡广录, 刘鹏, 李嘉楠, 陶虎, 周成乾. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565. |
| [5] | 张华, 押海廷, 徐存刚. 兰州市南北两山土壤水分遥感反演及植被需水量估算[J]. 干旱区研究, 2024, 41(4): 566-580. |
| [6] | 宋达成, 马全林, 刘世权, 魏林源, 吴昊, 段晓峰, 郭树江. 民勤黏土沙障-人工梭梭林物种多样性及土壤水分变化特征[J]. 干旱区研究, 2024, 41(4): 618-628. |
| [7] | 李健男, 史海滨, 苗庆丰, 珊丹, 荣浩, 温雅琴. 环境因子对不同种类人工乔木林分蒸腾耗水的影响[J]. 干旱区研究, 2023, 40(8): 1312-1321. |
| [8] | 吉吉佳门, 程一本, 谌玲珑, 万鹏翔, 张祎晖, 杨文斌, 白旭赢, 王涛. 科尔沁沙地樟子松人工林土壤水分动态及其对降雨的响应[J]. 干旱区研究, 2023, 40(5): 756-766. |
| [9] | 薛智暄, 张丽, 王新军, 李永康, 张冠宏, 李沛尧. 古尔班通古特沙漠SMAP土壤水分产品降尺度分析[J]. 干旱区研究, 2023, 40(4): 583-593. |
| [10] | 杨霜奇, 宋乃平, 王兴, 陈晓莹, 常道琴. 荒漠草原灰钙土与风沙土水分时空特征[J]. 干旱区研究, 2023, 40(10): 1625-1636. |
| [11] | 强玉泉,徐先英,张锦春,刘虎俊,郭树江,段晓峰. 民勤青土湖梭梭茎干液流特征及其对环境因子的响应[J]. 干旱区研究, 2022, 39(4): 1143-1154. |
| [12] | 张鹏飞,贾小旭,赵春雷,邵明安. 初始容重对土壤水分特征曲线的影响[J]. 干旱区研究, 2022, 39(4): 1174-1180. |
| [13] | 杨紫唯,车子涵,刘芙梅,陈克龙. 降水梯度对青海湖河源湿地温室气体排放日变化的影响[J]. 干旱区研究, 2022, 39(3): 754-766. |
| [14] | 周彦莉,吴海梅,周彦栋,尚旭民,逄蕾. 短期秸秆不同还田方式对土壤结构和水分影响[J]. 干旱区研究, 2022, 39(2): 502-509. |
| [15] | 王静,方锋,黄鹏程,岳平,李江萍,王大为. AMSR-E土壤水分产品评价及在干旱监测中的应用[J]. 干旱区研究, 2021, 38(3): 650-664. |
|
||