干旱区研究 ›› 2023, Vol. 40 ›› Issue (11): 1855-1864.doi: 10.13866/j.azr.2023.11.15

• 农业生态 • 上一篇    下一篇

磁氮耦合对膜下滴灌加工番茄产量及水肥利用效率的影响

马怡璠1,2,3(),吕德生1,2,3(),王振华1,2,3,李燕强1,2,3,刘健1,2,3,温越1,2,3,朱艳1,2,3   

  1. 1.石河子大学水利建筑工程学院,新疆 石河子 832000
    2.现代节水灌溉兵团重点实验室,新疆 石河子 832000
    3.农业农村部西北绿洲节水农业重点实验室,新疆 石河子 832000
  • 收稿日期:2023-05-25 修回日期:2023-08-20 出版日期:2023-11-15 发布日期:2023-12-01
  • 通讯作者: 吕德生. E-mail: 13899536225@163.com
  • 作者简介:马怡璠(1997-),女,硕士研究生,主要从事节水灌溉技术研究. E-mail: 869846674@qq.com
  • 基金资助:
    国家自然科学基金项目(52269016);兵团节水灌溉试验计划项目(BTJSSY-202307)

Effects of magnetic and nitrogen coupling on the yield and water and fertilizer usage efficiency of processed tomatoes under mulched drip irrigation

MA Yifan1,2,3(),LYU Desheng1,2,3(),WANG Zhenghua1,2,3,LI Yanqiang1,2,3,LIU Jian1,2,3,WEN Yue1,2,3,ZHU Yan1,2,3   

  1. 1. College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
    2. Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, Xinjiang, China
    3. Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, PR China, Shihezi 832000, Xinjiang, China
  • Received:2023-05-25 Revised:2023-08-20 Online:2023-11-15 Published:2023-12-01

摘要:

为探究适合膜下滴灌加工番茄的磁化水施肥制度,本研究以产量和水肥利用效率为目标,设置4个磁化水强度0 Gs(M0)、2000 Gs(M1)、3000 Gs(M2)、4000 Gs(M3)和3个施氮量水平200 kg N·hm-2(N1)、250 kg N·hm-2(N2)和300 kg N·hm-2(N3),采用裂区试验设计,进行田间试验。通过监测加工番茄生育期内的土壤含水率、株高、茎粗及地上部生物量,并结合最终产量指标,探究各磁氮组合对加工番茄水肥利用效率的影响。结果表明:磁化水滴灌显著提高了加工番茄的土壤含水率,增加了土壤储水量,磁氮耦合显著提升了20~40 cm土层土壤含水率。磁化水强度在2270~3678 Gs,施氮量220~230 kg·hm-2时,可促进加工番茄生长,磁化强度大于4000 Gs且施氮量超过250 kg·hm-2时,不能进一步提高加工番茄的生长。随磁化强度的增加,加工番茄产量及水肥利用效率呈先增后减的变化,施氮量的增加,会提高产量和水分利用效率,但会降低氮肥偏生产力。其中,M2N3处理的产量和水分利用效率最大,为169.67 t·hm-2和35.61 kg·m-3,M2N1处理的氮肥偏生产力最大,为822.54 kg·kg-1。运用回归分析并结合空间分析的方法,综合考虑得到产量、水分利用效率和氮肥偏生产力三者取得较大值时的磁氮区间为2270~3678 Gs和220~230 kg N·hm-2。本研究可为新疆加工番茄科学应用磁化水和氮肥提供理论支撑,为优化磁氮组合配置以提升加工番茄产量提供科学指导。

关键词: 膜下滴灌, 磁氮耦合, 产量, 水肥利用效率, 空间分析, 加工番茄

Abstract:

This study used yield and water and fertilizer usage efficiency as targets to explore a magnetized water fertilization system suitable for tomato processing via drip irrigation under film. Four magnetized water samples with an intensity of 0 Gs (M0), 2000 Gs (M1), 3000 Gs (M2), and 4000 Gs (M3) as well as three nitrogen application levels of 200 kg N·hm-2 (N1), 250 kg N·hm-2 (N2), and 300 kg N·hm-2 (N3) were set up, and a split zone test design was adopted. Field experiments were conducted. By monitoring the soil moisture content, plant height, stem diameter, and above-ground biomass during the growth period of processed tomatoes, combined with the final yield index, the effects of magnetic nitrogen combination on the water and fertilizer usage efficiency of processed tomatoes were explored. The results showed that magnetized water drip irrigation significantly increased soil moisture content and soil water storage. Magnetic nitrogen coupling was also shown to significantly increase the soil moisture content in the 20-40 cm soil layer. When the magnetized water intensity was 2270-3678 Gs and the nitrogen rate was 220-230 kg·hm-2, the growth of processed tomatoes was promoted. However, when the magnetization intensity was greater than 4000 Gs and the nitrogen rate was more than 250 kg·hm-2, the growth of processed tomatoes could not be further improved. As magnetization was increased, the yield and water and fertilizer use efficiency of processed tomatoes increased before decreasing. As the nitrogen application rate was increased, the yield and water use efficiency increased, but the partial productivity of nitrogen fertilizer decreased. Among them, the M2N3 treatment had the highest yield and water use efficiency (169.67 t·hm-2 and 35.61 kg·m-3), while the M2N1 treatment had the highest nitrogen partial productivity (822.54 kg·kg-1). Using regression and spatial analyses, the magnetic nitrogen range of yield, water use efficiency, and nitrogen partial productivity was 2270-3678 Gs and 220-230 kg N·hm-2. This study can provide theoretical support for the scientific application of magnetized water and nitrogen fertilizer in tomato processing in Xinjiang and provide scientific guidance for optimizing the magnetic nitrogen combination configuration to improve the yield of tomato processing.

Key words: mulched drip irrigation, magnetic and nitrogen coupling, yield, water and fertilizer utilization efficiency, spatial analysis, processing tomatoes