干旱区研究 ›› 2022, Vol. 39 ›› Issue (1): 113-122.doi: 10.13866/j.azr.2022. 01.12 cstr: 32277.14.AZR.2022.0112
收稿日期:
2021-07-13
修回日期:
2021-09-17
出版日期:
2022-01-15
发布日期:
2022-01-24
作者简介:
孙从建(1986-),男,教授,主要从事生态水文过程、资源评价研究. E-mail: 基金资助:
SUN Congjian(),CHEN Wei,WANG Shiyu
Received:
2021-07-13
Revised:
2021-09-17
Published:
2022-01-15
Online:
2022-01-24
摘要:
气候变化对中亚高山区水循环影响显著,加剧了区域水资源供需矛盾。认识区域内陆河径流组分特征对于水资源管理具有重要意义。基于塔里木盆地西南部提孜那甫河流域过去60 a(1957—2016年)的气象、径流数据,分析了区域气候变化特征及径流组分的响应。结果表明:(1) 过去60 a来,流域气温及山区降水呈现出明显的上升趋势,自2010年以来区域增温增湿趋势更为明显,这一变化下提孜纳甫河夏、秋季径流呈现显著增长。(2) 径流分割结果显示:冰雪融水、地下水及降水对于年径流的贡献率分别为17%,40%及43%;不同的季节的径流组分差异明显,降水对流域夏季径流的贡献较为显著。作为塔里木盆地西南部典型的内陆河流,未来区域气候变化尤其是降水的变化将会对于提孜纳甫河水资源的可持续利用影响显著。
孙从建,陈伟,王诗语. 气候变化下的塔里木盆地西南部内陆河流域径流组分特征分析[J]. 干旱区研究, 2022, 39(1): 113-122.
SUN Congjian,CHEN Wei,WANG Shiyu. Stream component characteristics of the inland river basin of the Tarim Basin under regional climate change[J]. Arid Zone Research, 2022, 39(1): 113-122.
表2
提孜纳甫河流域过去50 a气温降水变化率及突变点统计"
位置 | 类型 | 气温 | 降水 | ||||||
---|---|---|---|---|---|---|---|---|---|
Cv | 比率/[℃·(10a)-1] | 突变点(年) | Cv | 比率/[mm·(10a)-1] | 突变点(年) | 比例/% | |||
平原 | 年均 | 0.04 | 0.29 | 1996** | 0.56 | 5.66 | None | - | |
春季 | 0.13 | 0.35 | 1996** | 1.33 | 0.06 | None | 18 | ||
夏季 | 0.03 | 0.12 | None | 0.80 | 3.72 | None | 63 | ||
秋季 | 0.17 | 0.29 | 1997** | 1.29 | 1.38 | 1974* | 14 | ||
冬季 | 0.25 | 0.39 | 1978** | 1.51 | 0.50 | None | 5 | ||
山区 | 年均 | 0.24 | 0.31 | 1987** | 0.32 | 7.30 | 1997** | - | |
春季 | 2.29 | 0.33 | 1992** | 0.74 | 1.19 | None | 14 | ||
夏季 | 0.07 | 0.19 | 1993** | 0.46 | 4.95 | None | 66 | ||
秋季 | 0.23 | 0.44 | 1986** | 0.92 | 0.69 | None | 12 | ||
冬季 | 0.17 | 0.27 | None | 1.39 | 0.45 | None | 8 |
表4
提孜纳甫河流域不同水体氢氧稳定同位素及总矿化度参数"
月份 | 河水 | 降水 | 地下水 | 融冰雪水(河冰) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δD | δ18O | TDS | N | δD | δ18O | TDS | N | δD | δ18O | TDS | N | δD | δ18O | TDS | N | ||||
/‰ | /‰ | /(mg·L-1) | /‰ | /‰ | /(mg·L-1) | /‰ | /‰ | /(mg·L-1) | /‰ | /‰ | /(mg·L-1) | ||||||||
1 | -19.9 | -25.74 | 70 | 1 | |||||||||||||||
2 | -115.45 | -15.2 | 75 | 6 | |||||||||||||||
3 | -39.07 | -6.88 | 410 | 6 | -96.16 | -13.34 | 70 | 2 | -63.2 | -9.3 | 715 | 2 | -28.05 | -5.38 | 170 | 2 | |||
4 | -55.44 | -9.15 | 412 | 6 | -87.89 | -11.72 | 110 | 1 | -39.06 | -7.72 | 720 | 2 | -28.52 | -5.5 | 174 | 2 | |||
5 | -56 | -8.94 | 400 | 6 | -78.37 | -10.09 | 120 | 4 | -41.24 | -7.56 | 715 | 2 | -41.2 | -7.87 | 150 | 2 | |||
6 | -49.14 | -8.54 | 370 | 6 | -44.21 | -7.2 | 120 | 1 | -41.24 | -7.57 | 730 | 2 | -79.9 | -10.24 | 170 | 2 | |||
7 | -47.84 | -8.18 | 370 | 6 | -33.27 | -5.97 | 120 | 4 | -49.91 | -8.54 | 740 | 2 | -121..30 | -12.22 | 160 | 2 | |||
8 | -37.77 | -7.31 | 380 | 6 | -27.45 | -4.79 | 130 | 5 | -58.01 | -9.3 | 725 | 2 | -115.2 | -11.35 | 170 | 2 | |||
9 | -39.33 | -7.24 | 390 | 6 | -30.62 | -5.47 | 119 | 4 | -60.23 | -9.4 | 720 | 2 | -80.9 | -10.49 | 160 | 2 | |||
10 | -38.66 | -7.01 | 400 | 6 | -112.48 | -14.94 | 110 | 1 | -61.1 | -9.45 | 715 | 2 | -28.32 | -5.3 | 170 | 2 | |||
11 | -39.2 | -7.24 | 400 | 6 | -194.34 | -24.41 | 110 | 1 | -61 | -9.4 | 715 | 2 | -29.85 | -5.71 | 170 | 2 | |||
12 | - | - | - | - | -194.11 | -24.31 | 80 | 2 | - | - | - | - | - | - | - | - |
[1] | 张学斌, 石培基, 罗君, 等. 基于景观格局的干旱内陆河流域生态风险分析——以石羊河流域为例[J]. 自然资源学报, 2014, 29(3): 410-419. |
[Zhang Xuebin, Shi Peiji, Luo Jun, et al. The ecological risk assessment of arid inland river basin at the landscape scale: A case study on Shiyang River Basin[J]. Journal of Natural Resources, 2014, 29(3): 410-419. ] | |
[2] |
Chen Z, Chen Y, Li W. Response of runoff to change of atmospheric 0 °C level height in summer in arid region of Northwest China[J]. Science China Earth Sciences, 2012, 55(9): 1533-1544.
doi: 10.1007/s11430-012-4472-6 |
[3] |
Chen Y, Txkeuchi K, Xu C, et al. Regional climate change and its effects on river runoff in the Tarim Basin, China[J]. Hydrological Processes, 2006, 20(10): 2207-2216.
doi: 10.1002/(ISSN)1099-1085 |
[4] | 孔彦龙, 庞忠和. 高寒流域同位素径流分割研究进展[J]. 冰川冻土, 2010, 32(3): 619-625. |
[Kong Yanlong, Pang Zhonghe. Isotope hydrograph separation in alpine catchments: A review[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 619-625. ] | |
[5] |
Li B, Chen Y, Chen Z, et al. Trends in runoff versus climate change in typical rivers in the arid region of Northwest China[J]. Quaternary International, 2012, 282: 87-95.
doi: 10.1016/j.quaint.2012.06.005 |
[6] | Sun C, Chen Y, Li X, et al. Analysis on the stream flow components of the typical inland River, Northwest China[J]. Hydrological Sciences Journal, 2016, 61: 970-981. |
[7] |
Sun C, Li W, Chen Y, et al. Isotopic and hydrochemical composition of runoff in the Urumqi River, Tianshan Mountains, China[J]. Environmental Earth Sciences, 2015, 74: 1521-1537.
doi: 10.1007/s12665-015-4144-x |
[8] |
Sun C, Chen Y, Li W, et al. Isotopic time-series partitioning of stream flow components under regional climate change in the Urumqi River, Northwest China[J]. Hydrological Sciences Journal, 2016, 61: 1443-1459.
doi: 10.1080/02626667.2015.1031757 |
[9] | Buttle J. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins[J]. Progress in Physical Geography, 1994, 18(1): 16-41. |
[10] |
Kendall C, Coplen T. Distribution of oxygen-18 and deuterium in river waters across the United States[J]. Hydrological Processes, 2001, 15(7): 1363-1393.
doi: 10.1002/(ISSN)1099-1085 |
[11] |
Burns D. Storm flow-hydrograph separation based on isotopes: The thrill is gone-what’s next[J]. Hydrological Processes, 2002, 16(7): 1515-1517.
doi: 10.1002/(ISSN)1099-1085 |
[12] |
Zhang Y, Song X, Wu Y. Use of oxygen-18 isotope to quantify flows in the upriver and middle reaches of the Heihe River, Northwestern China[J]. Environmental Geology, 2008, 58: 645-653.
doi: 10.1007/s00254-008-1539-y |
[13] | Zhao L, Yin L, Xiao H. Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters of the Heihe River basin[J]. Chinese Science Bulletin, 2011, 5656(1): 58-67. |
[14] | Kong Y, Pang Z. Evaluating the sensitivity of glacier rivers to climate change based on hydrograph separation of discharge[J]. Journal of Hydrology, 2012, 434: 121-129. |
[15] | Chen Z, Chen Y, Li B. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of Northwest China[J]. Theoretical & Applied Climatology, 2013, 111: 537-545. |
[16] |
Sun C, Li X, Chen W, et al. Climate change and runoff response based on isotope analysis in an arid mountain watershed of the Western Kunlun Mountains[J]. Hydrological Sciences Journal, 2016, 62: 319-330.
doi: 10.1080/02626667.2016.1224885 |
[17] | 赵良菊, 尹力, 肖洪浪, 等. 黑河源区水汽来源及地表径流组成的稳定同位素证据[J]. 科学通报, 2011, 56(1): 58-67. |
[Zhao Liangju, Yin Li, Xiao Honglang, et al. Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters of the Heihe River basin[J]. Chinese Science Bulletin, 2011, 56(1): 58-67. ] | |
[18] | 陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012, 35(1): 1-9. |
[Cheng Yaning, Yang Qing, Lou Yi, et al. Ponder on the issues of water resources in the arid region of Northwest China[J]. Arid Land Geography, 2012, 35(1): 1-9. ] | |
[19] | 郝玥, 余新晓, 邓文平, 等. 北京西山大气降水D和18O组成变化及水汽来源[J]. 自然资源学报, 2016, 31(7): 1211-1221. |
[Hao Yue, Yu Xinxiao, Deng Wenping, et al. The variations of hydrogen and oxygen compositions and moisture sources in the precipitation in western Mountain areas of Beijing[J]. Journal of Natural Resources, 2016, 31(7): 1211-1221. ] | |
[20] | 李兰海, 白磊, 姚亚楠, 等. 基于IPCC情境下新疆地区未来气候变化的预估[J]. 资源科学, 2012, 34(4): 602-612. |
[Li Lanhai, Bai Lei, Yao Yanan, et al. Projection of climate change in Xinjiang under IPCC SRES[J]. Resources Science, 2012, 34(4): 602-612. ] | |
[21] | 李斐, 刘苗苗, 王水献. 2001—2013 年开都河流域上游积雪时空分布特征及其对气象因子的响应[J]. 资源科学, 2016, 38(6): 1160-1168. |
[Li Fei, Liu Miaomiao, Wang Shuixian. Change in snow coverage and responses to climate change from 2001 to 2013 in the upper reaches of Kaidu River Basin[J]. Resources Science, 2016, 38(6): 1160-1168. ] | |
[22] | 桂娟, 李宗省, 冯起, 等. 祁连山古浪河流域径流组分特征[J]. 冰川冻土, 2019, 41(4): 918-925. |
[Gui Juan, Li Zongxing, Feng Qi, et al. Characteristics of runoff components in the Gulang River basin of the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 918-925. ] | |
[23] | 李宗省, 冯起, 李宗杰, 等. 祁连山北坡稳定同位素生态水文学研究的初步进展与成果应用[J]. 冰川冻土, 2019, 41(5): 1044-1052. |
[Li Zongxing, Feng Qi, Li Zongjie, et al. Ecohydrology based on stable isotope tracing in the northern Qilian Mountains: Preliminary progress and its applications[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1044-1052. ] | |
[24] | 桂娟, 王旭峰, 李宗省, 等. 典型冰冻圈地区植被变化对人类活动的响应研究——以祁连山为例[J]. 冰川冻土, 2019, 41(5): 1235-1243. |
[Gui Juan, Wang Xufeng, Li Zongxing, et al. Research on the response of vegetation change to human activities in typical cryosphere areas: Taking the Qilian Mountains as an example[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1235-1243. ] | |
[25] |
Sun C, Chen Y, Li J, et al. Stable isotope variations in precipitation in the northwesternmost Tibetan Plateau related to various meteorological controlling factors[J]. Atmospheric Research, 2019, 227: 66-78.
doi: 10.1016/j.atmosres.2019.04.026 |
[26] |
Sun C, Chen W, Chen Y, et al. Stable isotope of atmospheric precipitation and its environmental drivers in the eastern Chinese Loess Plateau, China[J]. Journal of Hydrology, 2020, 581: 124404.
doi: 10.1016/j.jhydrol.2019.124404 |
[27] | 桂娟, 李宗省, 冯起, 等. 祁连山古浪河流域径流组分特征[J]. 冰川冻土, 2019, 41(4): 918-925. |
[Gui Juan, Li Zongxing, Feng Qi, et al. Characteristics of runoff components in the Gulang River basin of the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 918-925. ] | |
[28] |
Li Z, Qi F, L Z, et al. Climate background, fact and hydrological effect of multiphase water transformation in cold regions of the western China: A review[J]. Earth-Science Reviews, 2019, 190: 33-57.
doi: 10.1016/j.earscirev.2018.12.004 |
[29] |
Li Z, Gui J, Wang X, et al. Water resources in inland regions of central Asia: Evidence from stable isotope tracing[J]. Journal of Hydrology, 2019, 570: 1-16.
doi: 10.1016/j.jhydrol.2019.01.003 |
[30] |
Sun C, Shen Y, Chen Y, et al. Quantitative evaluation of the rainfall influence on streamflow in an inland mountainous river basin within Central Asia[J]. Hydrological Sciences Journal, 2018, 63(1): 17-30.
doi: 10.1080/02626667.2017.1390314 |
[1] | 李宇航, 余文学, 杨永均, 朱燕峰, 马静, 陈浮. 近60 a天山北坡经济带天然径流量时空变化及归因识别[J]. 干旱区研究, 2024, 41(9): 1446-1455. |
[2] | 陆文静, 瞿德业, 杨明月, 黄翰林, 杨山泉. 基于GCM的蒙古高原降水稳定同位素模拟[J]. 干旱区研究, 2024, 41(9): 1491-1502. |
[3] | 吕壮壮, 乔庆庆, 董孙艺, 汪冬. 中中新世气候适宜期全球变暖背景下亚洲内陆干旱区古气候演化特征及驱动机制[J]. 干旱区研究, 2024, 41(8): 1309-1322. |
[4] | 周杰, 王旭虎, 杜维波, 周晓雷, 杨洁, 张晓玮. 气候变化背景下的天山云杉潜在分布区预测[J]. 干旱区研究, 2024, 41(7): 1167-1176. |
[5] | 李小等, 常亮, 段瑞, 王倩, 张群慧, 杨炳超. 和田河流域水化学特征与地下水补给来源分析[J]. 干旱区研究, 2024, 41(6): 917-927. |
[6] | 梁双河, 牛最荣, 贾玲. 祖厉河干流近65 a径流变化及归因分析[J]. 干旱区研究, 2024, 41(6): 928-939. |
[7] | 唐可欣, 郭建斌, 何亮, 陈林, 万龙. 中国旱区GPP时空演变特征及影响因素研究[J]. 干旱区研究, 2024, 41(6): 964-973. |
[8] | 李晗薇, 姚俊强, 容韬, 张天洋, 高雅洁. 塔什库尔干河流域河谷大气降水同位素特征与水汽输送路径[J]. 干旱区研究, 2024, 41(3): 399-410. |
[9] | 李平平, 盖楠, 王晓丹, 杨俊仓. 敦煌月牙泉域地下水系统水文地球化学特征分析[J]. 干旱区研究, 2024, 41(2): 240-249. |
[10] | 张嘉琪, 刘招, 韩忠青, 王丽霞, 张晋霞, 岳甲寅, 管子隆. 气候变化下泾河流域蓝绿水变化趋势及预测[J]. 干旱区研究, 2024, 41(12): 2045-2055. |
[11] | 张倩, 曹广超, 张乐乐, 赵美亮. 祁连山南坡植被绿度时空变化及其对气候变化和人类活动的响应[J]. 干旱区研究, 2024, 41(12): 2143-2153. |
[12] | 胡广录, 樊亚仑, 陶虎, 李昊辰, 杨鹏华. 石羊河下游蔡旗站径流变化趋势及影响因素[J]. 干旱区研究, 2024, 41(11): 1842-1852. |
[13] | 张寿川, 赵春涛, 安亚涛, 刘凯, 余冬梅, 陈亮, 李庆宽, 王建萍. 那棱格勒河流域氢氧同位素特征及其指示意义[J]. 干旱区研究, 2024, 41(11): 1853-1863. |
[14] | 杨斐, 张文韬, 张飞民, 王澄海. 1961—2022年祁连山气候特征及其变化[J]. 干旱区研究, 2024, 41(10): 1627-1638. |
[15] | 张音, 孙从建, 刘庚, 钞锦龙, 耿甜伟. 近20 a塔里木河流域山区NDSI对气候变化的响应[J]. 干旱区研究, 2024, 41(10): 1639-1648. |
|