[1] |
Reynolds W D. An assessment of borehole infiltration analyses for measuring field-saturated hydraulic conductivity in the vadose zone[J]. Engineering Geology, 2013, 159: 119-130.
doi: 10.1016/j.enggeo.2013.02.006
|
[2] |
Bagarello V, Sferlazza S, Sgroi A. Comparing two methods of analysis of single-ring infiltrometer data for a sandy-loam soil[J]. Geoderma, 2009, 149(3-4): 415-420.
doi: 10.1016/j.geoderma.2008.12.022
|
[3] |
Xiao B, Sun F H, Hu K L. Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem[J]. Journal of Hydrology, 2019, 568: 792-802.
doi: 10.1016/j.jhydrol.2018.11.051
|
[4] |
Verbist K, Torfs S, Cornelis W M, et al. Comparison of single-and double-ring infiltrometer methods on stony soils[J]. Vadose Zone Journal, 2010, 9(2): 462.
doi: 10.2136/vzj2009.0058
|
[5] |
Alagna V, Bagarello V, Di Prima S, et al. Determining hydraulic properties of a loam soil by alternative infiltrometer techniques[J]. Hydrological Processes, 2016, 30(2): 263-275.
doi: 10.1002/hyp.v30.2
|
[6] |
Wang X J, Li H L, Yang J Z, et al. Measuring in situ vertical hydraulic conductivity in tidal environments[J]. Advances in Water Resources, 2014, 70: 118-130.
doi: 10.1016/j.advwatres.2014.05.004
|
[7] |
Daly E, Porporato A. A review of soil moisture dynamics: From rainfall infiltration to ecosystem response[J]. Environmental Engineering Science, 2005, 22(1): 9-24.
doi: 10.1089/ees.2005.22.9
|
[8] |
任杰, 沈振中, 杨杰, 等. 基于HYDRUS模型低温水入渗下土壤水热运移模拟[J]. 干旱区研究, 2016, 33(2): 246-252.
|
|
[Ren Jie, Shen Zhengzhong, Yang Jie, et al. Simulation of water and heat transfer in soil under low-temperature water infiltration based on the HYDRUS model[J]. Arid Zone Research, 2016, 33(2): 246-252. ]
|
[9] |
Regalado C M, Ritter A, Álvarez B, et al. Simplified method to estimate the Green-Ampt wetting front suction and soil sorptivity with the Philip-Dunne falling-head permeameter[J]. Vadose Zone Journal, 2005, 4(2): 291.
doi: 10.2136/vzj2004.0103
|
[10] |
Putte A V, Govers G, Leys A, et al. Estimating the parameters of the Green-Ampt infiltration equation from rainfall simulation data: Why simpler is better[J]. Journal of Hydrology, 2013, 476: 332-344.
doi: 10.1016/j.jhydrol.2012.10.051
|
[11] |
Huo W, Li Z, Zhang K, et al. GA-PIC: An improved Green-Ampt rainfall-runoff model with a physically based infiltration distribution curve for semi-arid basins[J]. Journal of Hydrology, 2020, 586: 124900.
doi: 10.1016/j.jhydrol.2020.124900
|
[12] |
Zhang J, Lei T G, Chen T Q. Impact of preferential and lateral flows of water on single-ring measured infiltration process and its analysis[J]. Soil Science Society of America Journal, 2016, 80(4): 859.
doi: 10.2136/sssaj2015.12.0445
|
[13] |
Wang C Y, Mao X M, Hatano R. Modeling ponded infiltration in fine textured soils with coarse interlayer[J]. Soil Science Society of America Journal, 2014, 78(3): 745-753.
doi: 10.2136/sssaj2013.12.0535
|
[14] |
Sansoulet J L, Cabidoche Y M, Cattan P, et al. Spatially distributed water fluxes in an andisol under banana plants: Experiments and three-dimensional modeling[J]. Vadose Zone Journal, 2008, 7(2): 819-829.
doi: 10.2136/vzj2007.0073
|
[15] |
Mashayekhi P, Ghorbanidashtaki S, Mosaddeghi M R, et al. Different scenarios for inverse estimation of soil hydraulic parameters from double-ring infiltrometer data using HYDRUS-2D/3D[J]. International Agrophysics, 2016, 30(2): 203-210.
doi: 10.1515/intag-2015-0087
|
[16] |
Kandelous M M, Šimůnek J. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D[J]. Agricultural Water Management, 2010, 97(7): 1070-1076.
doi: 10.1016/j.agwat.2010.02.012
|
[17] |
Yi J, Zhao Y, Shao M A, et al. Hydrological processes and eco-hydrological effects of farmland-forest-desert transition zone in the middle reaches of Heihe River Basin, Gansu, China[J]. Journal of Hydrology, 2015, 529: 1690-1700.
doi: 10.1016/j.jhydrol.2015.08.017
|
[18] |
Stratford C J, Robins N S, Clarke D, et al. An ecohydrological review of dune slacks on the west coast of England and Wales[J]. Ecohydrology, 2013, 6(1): 162-171.
doi: 10.1002/eco.v6.1
|
[19] |
Zhang C C, Li X Y, Wang Y, et al. Responses of two desert shrubs to simulated rainfall pulses in an arid environment, northwestern China[J]. Plant and Soil, 2019, 435(1): 239-255.
doi: 10.1007/s11104-018-3892-2
|
[20] |
Diego Rivera, Mario Lillo, Stalin Granda. Representative locations from time series of soil water content using time stability and wavelet analysis[J]. Environmental Monitoring and Assessment, 2014, 186(12): 9075-9087.
doi: 10.1007/s10661-014-4067-0
pmid: 25249045
|
[21] |
Wang S, Fu B J, Gao G Y, et al. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China[J]. Catena, 2013, 101: 122-128.
doi: 10.1016/j.catena.2012.10.006
|
[22] |
Dohnal M, Vogel T, Dusek J, et al. Interpretation of ponded infiltration data using numerical experiments[J]. Journal of Hydrology and Hydromechanics, 2016, 64(3): 289-299.
doi: 10.1515/johh-2016-0020
|
[23] |
Chamizo S, Cantón Y, Domingo F, et al. Evaporative losses from soils covered by physical and different types of biological soil crusts[J]. Hydrological Processes, 2013, 27(3): 324-332.
doi: 10.1002/hyp.v27.3
|
[24] |
Cheng Q B, Chen X, Chen X H, et al. Water infiltration underneath single-ring permeameters and hydraulic conductivity determination[J]. Journal of Hydrology, 2011, 398(1-2): 135-143.
doi: 10.1016/j.jhydrol.2010.12.017
|
[25] |
石兰君, 乔晓英, 曾磊, 等. 甘肃黑方台黄土水分运移规律模拟[J]. 干旱区研究, 2018, 35(4): 813-820.
|
|
[Shi Lanjun, Qiao Xiaoying, Zeng Lei, et al. Loess moisture migration in Heifangtai of Gansu Province[J]. Arid Zone Research, 2018, 35(4): 813-820. ]
|
[26] |
Smith R E. The infiltration envelope: Results from a theoretical infiltrometer[J]. Journal of Hydrology, 1972, 17: 1-21.
doi: 10.1016/0022-1694(72)90063-7
|
[27] |
Uloma A R, Samuel A C, Kingsley I K. Estimation of Kostiakov’s infiltration model parameters of some sandy loam soils of Ikwuano-Umuahia, Nigeria[J]. Open Transactions on Geosciences, 2014, 1(1): 34-38.
|
[28] |
Duan R B, Fedler C, Borrelli J. Field evaluation of infiltration models in lawn soils[J]. Irrigation Science, 2011, 29(5): 379-389.
doi: 10.1007/s00271-010-0248-y
|
[29] |
Lewis J D. Assessment of a Single-ring Sprinkle Infiltrometer Method for Evaluating Soil-based Stormwater Management Practices[D]. North Carolina, Raleigh: Graduate Faculty of North Carolina State University, 2016.
|
[30] |
Sihag P, Tiwari N K, Ranjan S. Modelling of infiltration of sandy soil using gaussian process regression[J]. Modeling Earth Systems and Environment, 2017, 3(3): 1091-1100.
doi: 10.1007/s40808-017-0357-1
|
[31] |
Zolfaghari A A, Mirzaee S, Gorji M. Comparison of different models for estimating cumulative infiltration[J]. International Journal of Soil Science, 2012, 7(3): 108-115.
doi: 10.3923/ijss.2012.108.115
|
[32] |
Ogbe V B, Jayeoba O J, Ode S O. Comparison of four soil infiltration models on a sandy soil in Lafia, Southern Guinea Savanna Zone of Nigeria[J]. Production Agriculture and Technology, 2011, 7(2): 116-126.
|
[33] |
孙程鹏, 赵文智, 杨淇越. 绿洲边缘夹黏沙丘持水特性[J]. 生态学报, 2018, 38(11): 3879-3888.
|
|
[Sun Chengpeng, Zhao Wenzhi, Yang Qiyue. Water retention of the clay interlayer of dunes at the edge of an oasis[J]. Acta Ecologica Sinica, 2018, 38(11): 3879-3888. ]
|
[34] |
崔浩浩, 张冰, 冯欣, 等. 不同土体构型土壤的持水性能[J]. 干旱地区农业研究, 2016, 34(4): 1-5.
|
|
[Cui Haohao, Zhang Bing, Feng Xin, et al. Soil water-holding properties of different soil body configuration[J]. Agricultural Research in the Arid Areas, 2016, 34(4): 1-5. ]
|