[1] |
徐敩祖, 王家澄, 张立新, 等. 冻土物理学[M]. 北京: 科学出版社, 2010.
|
|
[Xu Xiaozhu, Wang Jiacheng, Zhang Lixin, et al. Frozen Soil Physics[M]. Beijing: Science Press, 2010. ]
|
[2] |
徐敩祖, 王家澄, 张立新, 等. 土体的冻胀和盐胀机理[M]. 北京: 科学出版社, 1995.
|
|
[Xu Xiaozhu, Wang Jiacheng, Zhang Lixin, et al. Mechanisms of Frost Heave and Soil Expansion of Soils[M]. Beijing: Science Press, 1995. ]
|
[3] |
Kurylyk B L, Watanabe K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils[J]. Advances in Water Resources, 2013, 60: 160-177.
doi: 10.1016/j.advwatres.2013.07.016
|
[4] |
Zhou J Z, Wei C F, Lai Y M. et al. Application of the generalized clapeyron equation to freezing point depression and unfrozen water content[J]. Water Resources Research, 2018, 54(11): 9412-9431.
doi: 10.1029/2018WR023221
|
[5] |
乌艺恒, 赵鹏武, 周梅, 等. 季节性冻土区土体冻融过程及其对水热因子的响应[J]. 干旱区研究, 2019, 36(6): 1568-1575.
|
|
[Wu Yiheng, Zhao Pengwu, Zhou Mei, et al. Freezing-thawing process of seasonal frozen soil and its response to moisture and temperature[J]. Arid Zone Research, 2019, 36(6): 1568-1575. ]
|
[6] |
Kleinberg R L, Griffin D D. NMR measurement of permafrost: Unfrozen water assay, pore-scale distribution of ice, and hydraulic permeability of sediments[J]. Cold Regions and Technology, 2005, 42(1): 63-77.
|
[7] |
裴万胜. 冻土水-热-力相互作用过程及数值模拟研究[D]. 北京: 中国科学院大学, 2015.
|
|
[Pei Wansheng. Study of the Hydro-thermal-mechanical Interaction Process of Frozen Soil and Its Numerical Simulation[D]. Beijing: University of Chinese Academy of Sciences, 2015. ]
|
[8] |
Kruse A M, Darrow M M, Akagawa S. Improvements in measuring unfrozen water in frozen soils using the pulsed nuclear magnetic resonance method[J]. Journal of Cold Regions Engineering, 2018, 32(1): 04017016. https://doi.10.1061/(ASCE)CR.1943-5495.0000141.
|
[9] |
吴芹芹, 莫淑红, 程圣东, 等. 黄土区冻融期不同土地利用土壤水分与温度的关系[J]. 干旱区研究, 2020, 37(3): 627-635.
|
|
[Wu Qinqin, Mo Shuhong, Cheng Shengdong, et al. Study on the correlation between soil moisture and temperature of different land uses in the loess area during a freezing-thawing period[J]. Arid Zone Research, 2020, 37(3): 627-635. ]
|
[10] |
Anderson D M, Tice A R. Predicting unfrozen water content in frozen soils from surface area measurements[J]. Highway Research Record, 1972, 393: 12-18.
|
[11] |
McKenzie J M, Voss C I, Siegel D I. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs[J]. Advanced Water Resources, 2007, 30(4): 966-983.
doi: 10.1016/j.advwatres.2006.08.008
|
[12] |
Kong L M, Wang Y S, Sun W J, et al. Influence of plasticity on unfrozen water content of frozen soils as determined by nuclear magnetic resonance[J]. Cold Regions Science and Technology, 2020, 172:102993.https://doi.org/10.1016/j.coldregions.2020.102993.
|
[13] |
Daanen R P, Nieber J L. Model for coupled liquid water flow and heat transport with phase change in a snowpack[J]. Journal of Cold Regions Engineering, 2009, 23(2): 43-68.
doi: 10.1061/(ASCE)0887-381X(2009)23:2(43)
|
[14] |
Painter S L, Karra S. Constitutive model for unfrozen water content in subfreezing unsaturated soils[J]. Vadose Zone Journal, 2014, 13(4): 334-338.
|
[15] |
Chai M T, Zhang J M, Zhang H, et al. A method for calculating unfrozen water content of silty clay with consideration of freezing point[J]. Applied Clay Science, 2018, 161: 474-481.
doi: 10.1016/j.clay.2018.05.015
|
[16] |
Shoop S, Bigl S. Moisture migration during freeze and thaw of unsaturated soils: Modeling and large scale experiments[J]. Cold Regions Science and Technology, 1997, 25: 33-45.
doi: 10.1016/S0165-232X(96)00015-8
|
[17] |
Zhang X, Sun S, Xue Y. Development and testing of a frozen soil parameterization for cold region studies[J]. Journal of Hydrometeorology, 2007, 8: 690-701.
doi: 10.1175/JHM605.1
|
[18] |
Dall’Amico M, Endrizzi S, Gruber S, et al. A robust and energy-conserving model of freezing variably-saturated soil[J]. The Cryosphere, 2011, 5: 469-484.
doi: 10.5194/tc-5-469-2011
|
[19] |
Watanabe K, Kito T, Wake T, et al. Freezing experiments on unsaturated sand, loam and silt loam[J]. Annals of Glaciology, 2011, 52: 37-43.
doi: 10.3189/172756411797252220
|
[20] |
Sheshukov A Y, Niber J L. One dimensional freezing of nonheaving unsaturated soils: Model formulation and similarity solution[J]. Water Resources Research, 2011, 47(11): 11519. https://doi:10.1029/2011WR010512.
|
[21] |
Wang C, Lai Y M, Zhang M Y. Estimating soil freezing characteristic curve based on pore-size distribution[J]. Applied Thermal Engineering, 2017, 124: 1049-1060.
doi: 10.1016/j.applthermaleng.2017.06.006
|
[22] |
Xiao Z A, Lai Y M, Zhang J. A thermodynamic model for calculating the unfrozen water content of frozen soil[J]. Cold Regions Science and Technology, 2020, 172: 103011. https://doi.org/10.1016/j.coldregions.2020.103011.
|
[23] |
Hitchcock I, Holt E M, Lowe J P, et al. Studies of freezing-melting hysteresis in cryoporometry scanning loop experiments using NMR diffusometry and relaxometry[J]. Chemical Engineering Science, 2011, 66(4): 582-592.
doi: 10.1016/j.ces.2010.10.027
|
[24] |
Cash J W, Dash J G, Fu H Y. Theory of ice premelting in monosized powders[J]. Journal of Crystal Growth, 1992, 123: 101-108.
doi: 10.1016/0022-0248(92)90014-A
|
[25] |
Wettlaufer J S. Impurity effects in the premelting of ice[J]. Physical Review Letters, 1999, 82: 2516. https://doi.org/10.1103/PhysRevLett.82.2516.
|
[26] |
Hendrik H G, Wettlaufer J S. Theory of ice premelting in porous media[J]. Physical Review E, 2010, 81: 031604: 1-13.
|
[27] |
Dash J G, Rempel A W, Wettlaufer J S. The physics of premelted ice and its geophysical consequences[J]. Review of Modern Physics, 2006, 78: 695-741.
doi: 10.1103/RevModPhys.78.695
|
[28] |
Tang L Y, Wang K, Jin L, et al. A resistivity model for testing unfrozen water content of frozen soil[J]. Cold Regions Science and Technology, 2018, 153: 55-63.
doi: 10.1016/j.coldregions.2018.05.003
|
[29] |
Qiu E X, Wan X S, Qu M F, et al. Estimating unfrozen water content in frozen soils based on soil particle distribution[J]. Journal of Cold Regions Engineering, 2020, 34(2): 04020002, doi: 10.1061/(ASCE)CR.1943-5495.0000208.
doi: 10.1061/(ASCE)CR.1943-5495.0000208
|
[30] |
靳潇, 杨文, 孟宪红, 等. 基于双电层模型冻土中未冻水含量理论推演及应用[J]. 岩土力学, 2019, 40(4): 1449-1456.
|
|
[Jin Xiao, Yang Wen, Meng Xianhong, et al. Deduction and application of unfrozen water content in soil based on electrical double-layer theory[J]. Rock and Soil Mechanics, 2019, 40(4): 1449-1456. ]
|
[31] |
Wen Z, Ma W, Feng W J, et al. Experimental study on unfrozen water content and soil matric potential of Qinghai-Tibet silty clay[J]. Environmental Earth Science, 2012, 66(5): 1467-1476.
doi: 10.1007/s12665-011-1386-0
|
[32] |
Wan X S, Lai Y M, Wang C. Experimental Study on the Freezing Temperatures of Saline Silty Soils[J]. Permafrost and Periglacial Processes, 2015, 26(2): 175-187.
doi: 10.1002/ppp.v26.2
|
[33] |
Lu J G, Pei W S, Zhang X Y, et al. Evaluation of calculation models for the unfrozen water content of freezing soils[J]. Journal of Hydrology, 2019, 575: 976-985.
doi: 10.1016/j.jhydrol.2019.05.031
|
[34] |
冷毅飞, 张喜发, 杨凤学, 等. 冻土未冻水含量的量热法试验研究[J]. 岩土力学, 2010, 31(12): 3758-3764.
|
|
[Leng Yifei, Zhang Xifa, Yang Fengxue, et al. Experimental research on unfrozen water content of frozen soils by calorimetry[J]. Rock and Soil Mechanics, 2010, 31(12): 3758-3764. ]
|
[35] |
李述训, 程国栋, 刘继民, 等. 兰州黄土在冻融过程中水热输运实验研究[J]. 冰川冻土, 1996, 18(4): 319-324.
|
|
[Li Shuxun, Cheng Guodong, Liu Jimin, et al. Experimental study on heat moisture transfer in lanzhou loess during freezing-thawing processes[J]. Journal of Glaciology and Geocryology, 1996, 18(4): 319-324. ]
|