Arid Zone Research ›› 2022, Vol. 39 ›› Issue (3): 734-744.doi: 10.13866/j.azr.2022.03.07
Previous Articles Next Articles
DING Yan1(),XU Dehe1(),CAO Lianhai1,GUAN Xiangrong2
Received:
2021-10-12
Revised:
2021-12-30
Online:
2022-05-15
Published:
2022-05-30
Contact:
Dehe XU
E-mail:13007520896@163.com;1445073551@qq.com
DING Yan,XU Dehe,CAO Lianhai,GUAN Xiangrong. Applicability of the LSTM and ARIMA model in drought prediction based on CEEMD: A case study of Xinjiang[J].Arid Zone Research, 2022, 39(3): 734-744.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
ADF test of the original sequence"
SPI序列 | 单位根检验 | 临界值 | P值 | ||
---|---|---|---|---|---|
1% | 5% | 10% | |||
SPI1 | -8.0407 | -3.4419 | -2.8667 | -2.5695 | 1.8500e-12 |
SPI3 | -9.4801 | -3.4419 | -2.8666 | -2.5695 | 3.8938e-16 |
SPI6 | -6.7711 | -3.4420 | -2.8667 | -2.5695 | 2.6407e-09 |
SPI9 | -4.4529 | -3.4423 | -2.8668 | -2.5696 | 0.0002 |
SPI12 | -4.0259 | -3.4423 | -2.8668 | -2.5696 | 0.0013 |
SPI24 | -3.8011 | -3.4425 | -2.8669 | -2.5696 | 0.0029 |
Tab. 4
R2, RMSE and MAE values of the predicted results of four models"
时间尺度 | 模型 | R2 | RMSE | MAE |
---|---|---|---|---|
1个月 | LSTM | -0.0146 | 0.8681 | 0.6478 |
ARIMA | -0.0058 | 0.8643 | 0.6431 | |
CEEMD-LSTM | 0.2648 | 0.7389 | 0.5683 | |
CEEMD-ARIMA | 0.4488 | 0.6398 | 0.4828 | |
3个月 | LSTM | 0.4200 | 0.7906 | 0.6040 |
ARIMA | 0.4986 | 0.7350 | 0.5531 | |
CEEMD-LSTM | 0.5782 | 0.6742 | 0.5017 | |
CEEMD-ARIMA | 0.8246 | 0.4347 | 0.3355 | |
6个月 | LSTM | 0.6686 | 0.6595 | 0.4710 |
ARIMA | 0.6870 | 0.6410 | 0.4554 | |
CEEMD-LSTM | 0.7776 | 0.5402 | 0.4116 | |
CEEMD-ARIMA | 0.9153 | 0.3334 | 0.2397 | |
9个月 | LSTM | 0.7873 | 0.5732 | 0.3856 |
ARIMA | 0.8039 | 0.5503 | 0.3553 | |
CEEMD-LSTM | 0.8921 | 0.4082 | 0.2839 | |
CEEMD-ARIMA | 0.9619 | 0.2426 | 0.1789 | |
12个月 | LSTM | 0.8592 | 0.4858 | 0.3084 |
ARIMA | 0.8732 | 0.4610 | 0.2628 | |
CEEMD-LSTM | 0.9302 | 0.3420 | 0.2251 | |
CEEMD-ARIMA | 0.9793 | 0.1863 | 0.1271 | |
24个月 | LSTM | 0.8882 | 0.4266 | 0.2700 |
ARIMA | 0.9103 | 0.3822 | 0.2109 | |
CEEMD-LSTM | 0.9403 | 0.3119 | 0.1958 | |
CEEMD-ARIMA | 0.9846 | 0.1584 | 0.1019 |
[1] | 李夫鹏, 王正涛, 超能芳, 等. 利用Swarm星群探测亚马逊流域2015-2016年干旱事件[J]. 武汉大学学报·信息科学版, 2020, 45(4): 595-603. |
[ Li Fupeng, Wang Zhengtao, Chao Nengfang, et al. 2015-2016 drought event in the Amazon River basin as measured by Swarm constellation[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 595-603. ] | |
[2] | 田丰, 武建军, 刘雷震, 等. 1901-2015年华北平原干旱时空转移特征及热点区域探测[J]. 干旱区资源与环境, 2020, 34(6): 87-96. |
[ Tian Feng, Wu Jianjun, Liu Leizhen, et al. Spatiotemporal transferring characteristics of drought and its hotpots detection in North China Plain during 1901-2015[J]. Journal of Arid Land Resources and Environment, 2020, 34(6): 87-96. ] | |
[3] | 卢宝宝, 孙慧兰, 姜泉泉, 等. 近53 a新疆水分盈亏量时空变化特征[J]. 干旱区研究, 2021, 38(6): 1579-1589. |
[ Lu Baobao, Sun Huilan, Jiang Quanquan, et al. Spatiotemporal variation characteristics of the water budget in Xinjiang during the latest 53 years[J]. Arid Zone Research, 2021, 38(6): 1579-1589. ] | |
[4] | 宋玉鑫, 左其亭, 马军霞. 基于SWAT模型的开都河流域水文干旱变化特征及驱动因子分析[J]. 干旱区研究, 2021, 38(3): 610-617. |
[ Song Yuxin, Zuo Qiting, Ma Junxia. Variation and dynamic drivers of drought in Kaidu River Basin based on the SWAT model[J]. Arid Zone Research, 2021, 38(3): 610-617. ] | |
[5] |
Vasiliades L, Loukas A, Liberis N. A water balance derived drought index for Pinios River Basin, Greece[J]. Water Resources Management, 2011, 25(4): 1087-1101.
doi: 10.1007/s11269-010-9665-1 |
[6] |
方秀琴, 郭晓萌, 袁玲, 等. 随机森林算法在全球干旱评估中的应用[J]. 地球信息科学学报, 2021, 23(6): 1040-1049.
doi: 10.12082/dqxxkx.2021.200474 |
[ Fang Xiuqin, Guo Xiaomeng, Yuan Ling, et al. Application of random forest algorithm in global drought assessment[J]. Journal of Geo-Information Science, 2021, 23(6): 1040-1049. ]
doi: 10.12082/dqxxkx.2021.200474 |
|
[7] | 刘媛媛, 李霞, 王小博, 等. 2001-2018年中国-老挝交通走廊核心区植被稳定性对极端干旱的响应[J]. 生态学报, 2021, 41(7): 2537-2547. |
[ Liu Yuanyuan, Li Xia, Wang Xiaobo, et al. Vegetation stability in response to extreme droughts from 2001 to 2018 in the core area of China-Laos transportation corridors[J]. Acta Ecologica Sinica, 2021, 41(7): 2537-2547. ] | |
[8] | 周丽, 谢舒蕾, 吴彬. 基于CI和强度分析方法的四川冬春季干旱事件变化特征[J]. 自然灾害学报, 2020, 29(3): 36-44. |
[ Zhou Li, Xie Shulei, Wu Bin. Variation characteristics of the winter and spring drought events in Sichuan based on CI and Intensity analysis[J]. Journal of Natural Disasters, 2020, 29(3): 36-44. ] | |
[9] | 徐一丹, 任传友, 马熙达, 等. 基于SPI/SPEI指数的东北地区多时间尺度干旱变化特征对比分析[J]. 干旱区研究, 2017, 34(6): 1250-1262. |
[ Xu Yidan, Ren Chuanyou, Ma Xida, et al. Change of drought at multiple temporal scales based on SPI /SPEI in Northeast China[J]. Arid Zone Research, 2017, 34(6): 1250-1262. ] | |
[10] |
李明, 葛晨昊, 邓宇莹, 等. 黄土高原气象干旱和农业干旱特征及其相互关系研究[J]. 地理科学, 2020, 40(12): 2105-2114.
doi: 10.13249/j.cnki.sgs.2020.12.017 |
[ Li Ming, Ge Chenhao, Deng Yuying, et al. Meteorological and agricultural drought characteristics and their relationship across the Loess Plateau[J]. Scientia Geographica Sinica, 2020, 40(12): 2105-2114. ]
doi: 10.13249/j.cnki.sgs.2020.12.017 |
|
[11] |
Rezaei H, Faaljou H, Mansourfar G. Stock price prediction using deep learning and frequency decomposition[J]. Expert Systems with Applications, 2020, 169(12): 114332, doi: 10.1016/j.eswa.2020.114332.
doi: 10.1016/j.eswa.2020.114332 |
[12] |
徐岩岩, 常军. 基于DERF2.0模式1-52天最低温度逐日预报的检验评估[J]. 高原气象, 2018, 37(4): 1042-1050.
doi: 10.7522/j.issn.1000-0534.2017.00090 |
[ Xu Yanyan, Chang Jun. Evaluation of the minimum temperature forecast of 1-52 days based on DERF2.0 model[J]. Plateau Meteorology, 2018, 37(4): 1042-1050. ]
doi: 10.7522/j.issn.1000-0534.2017.00090 |
|
[13] |
Wu C, Wang J, Chen X, et al. A novel hybrid system based on multi-objective optimization for wind speed forecasting[J]. Renewable Energy, 2020, 146(8): 149-165.
doi: 10.1016/j.renene.2019.04.157 |
[14] | 王蕾, 王鹏新, 李俐, 等. 应用条件植被温度指数预测县域尺度小麦单产[J]. 武汉大学学报·信息科学版, 2018, 43(10): 1566-1573. |
[ Wang Lei, Wang Pengxin, et al. Wheat yield forecasting at county scale based on time series vegetation temperature condition index[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1566-1573. ] | |
[15] | 杨慧荣, 张玉虎, 崔恒建, 等. ARIMA和ANN模型的干旱预测适用性研究[J]. 干旱区地理, 2018, 41(5): 945-953. |
[ Yang Huirong, Zhang Yuhu, Cui Hengjian, et al. Applicability of ARIMA and ANN models for drought forecasting[J]. Arid Land Geography, 2018, 41(5): 945-953. ] | |
[16] |
Liu M D, Ding L, Bai Y L. Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction[J]. Energy Conversion and Management, 2021, 233: 113917, doi: 10.1016/j.enconman.2021.113917.
doi: 10.1016/j.enconman.2021.113917 |
[17] | 张建海, 张棋, 许德合, 等. ARIMA-LSTM组合模型在基于SPI干旱预测中的应用--以青海省为例[J]. 干旱区地理, 2020, 43(4): 1004-1013. |
[ Zhang Jianhai, Zhang Qi, Xu Dehe, et al. Application of a combined ARIMA-LSTM model based on SPI for the forecast of drought: A case study in Qinghai Province[J]. Arid Land Geography, 2020, 43(4): 1004-1013. ] | |
[18] | 王亦斌, 孙涛, 梁雪春, 等. 基于EMD-LSTM模型的河流水量水位预测[J]. 水利水电科技进展, 2020, 40(6): 40-47. |
[ Wang Yibin, Sun Tao, Liang Xuechun, et al. Prediction of river water flow and water level based on EMD-LSTM model[J]. Advances in Science and Technology of Water Resources, 2020, 40(6): 40-47. ] | |
[19] | 刘艳, 杨耘, 聂磊, 等. 玛纳斯河出山口径流EEMD-ARIMA预测[J]. 水土保持研究, 2017, 24(6): 273-280, 285. |
[ Liu Yan, Yang Yun, Nie Lei, et al. The EEMD-ARIMA prediction of runoff at mountain pass of Manas River[J]. Research of Soil and Water Conservation, 2017, 24(6): 273-280, 285. ] | |
[20] | 杨倩, 秦莉, 高培, 等. 基于EEMD-LSTM模型的天山北坡经济带年降水量预测[J]. 干旱区研究, 2021, 38(5): 1235-1243. |
[ Yang Qian, Qin Li, Gao Pei, et al. Prediction of annual precipitation in the northern slope economic belt of Tianshan Mountains based on a EEMD-LSTM model[J]. Arid Zone Research, 2021, 38(5): 1235-1243. ] | |
[21] | Zhang X, Wu X, He S, et al. Precipitation forecast based on CEEMD-LSTM coupled model[J]. Water Science & Technology Water Supply, 2021, 21(22): 1-17. |
[22] | 许德合, 丁严, 张棋, 等. EEMD-ARIMA在干旱预测中的应用--以新疆维吾尔自治区为例[J]. 中国农村水利水电, 2021(7): 1-11. |
[ Xu Dehe, Ding Yan, Zhang Qi, et al. Application of the EEMD-ARIMA combined model in drought prediction: A case study in Xinjiang Uygur Autonomous Region[J]. China Rural Water and Hydropower, 2021(7): 1-11. ] | |
[23] |
Tsakiris G, Vangelis H. Towards a drought watch system based on spatial SPI[J]. Water Resources Management, 2004, 18(1): 1-12.
doi: 10.1023/B:WARM.0000015410.47014.a4 |
[24] | Moreira E E. SPI drought class prediction using log-linear models applied to wet and dry seasons[J]. Physics and Chemistry of the Earth, 2016, 94: 136-145. |
[25] |
Alquraish M, Abuhasel K A, Alqahtani A S,et al. SPI-based hybrid hidden Markov-GA, ARIMA-GA, and ARIMA-GA-ANN models for meteorological drought forecasting[J]. Sustainability, 2021, 13(22): 12576, doi: 10.3390/su132212576.
doi: 10.3390/su132212576 |
[26] | Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995. |
[27] |
Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1: 1-41.
doi: 10.1142/S1793536909000047 |
[28] |
Yeh J R, Shieh J S, Huang N E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156.
doi: 10.1142/S1793536910000422 |
[29] | 孙堃, 赵萌萌, 沈美娜, 等. 基于CEEMD和模糊熵的随机森林风力发电功率预测[J]. 智慧电力, 2019, 47(10): 36-43. |
[ Sun Kun, Zhao Mengmeng, Shen Meina, et al. Wind power forecasting with random forest based on CEEMD and fuzzy entropy[J]. Smart Power, 2019, 47(10): 36-43. ] | |
[30] | Box G E P, Jenkins G M. Time series Analysis: Forecasting and Control[M]. San Francisco: Holden Day, 1976. |
[31] | Dilling S, Macvicar B J. Cleaning high-frequency velocity profile data with autoregressive moving average (ARMA) models[J]. Flow Measurement & Instrumentation, 2017, 54: 68-81. |
[32] | 左秀霞. 带高次趋势项的ADF单位根检验[J]. 数量经济技术经济研究, 2019, 36(1): 152-169. |
[ Zuo Xiuxia. ADF unit rot test with high order trend term[J]. The Journal of Quantitative & Technical Economics, 2019, 36(1): 152-169. ] | |
[33] |
Liu Q, Zhang G, Ali S, et al. SPI-based drought simulation and prediction using ARMA-GARCH model[J]. Applied Mathematics and Computation, 2019, 355: 96-107.
doi: 10.1016/j.amc.2019.02.058 |
[34] |
Adikari K E, Shrestha S, Ratnayake D T, et al. Evaluation of artificial intelligence models for flood and drought forecasting in arid and tropical regions[J]. Environmental Modelling & Software, 2021, 144(4): 105136, doi: 10.1016/j.envsoft.2021.105136.
doi: 10.1016/j.envsoft.2021.105136 |
[1] | SUN Linlin, LIU Qiong, HUANG Guan, CHEN Yonghang, WEI Xin, GUO Yulin, ZHANG Taixi, GAO Tianyi, XU Yunhong. Analysis of surface solar radiation under different cloud conditions in Xinjiang and the surrounding “Belt and Road” regions [J]. Arid Zone Research, 2024, 41(9): 1480-1490. |
[2] | LI Ye, JIANG Wei, CHEN Xiaojun, WU Yingjie, WANG Sinan. Drought trends in Ordos from 1961 to 2020 based on meteorological precipitation anomaly percentage [J]. Arid Zone Research, 2024, 41(7): 1099-1111. |
[3] | JIAN Zhengbo, LUO Hao, SHAN Nana. A study on the spatial and temporal evolution and carbon effects of production-living-ecological in Xinjiang under carbon peak and carbon neutrality goals [J]. Arid Zone Research, 2024, 41(7): 1238-1248. |
[4] | LIU Huaqing, WANG Bo, JIA Yanyan, XIE Xinran, ZHANG Wei. Characterization of the freezing injury to Juglans regia at different slope positions in the West Tianshan valley of Xinjiang, China [J]. Arid Zone Research, 2024, 41(6): 1079-1088. |
[5] | MA Yuanzhi, QIN Xiaolin, LING Hongbo, YAN Junjie, ZHANG Guangpeng. Spatio-temporal characteristics and trends of area changes in the small and medium-sized lakes in Xinjiang, China, from 1991 to 2020 [J]. Arid Zone Research, 2024, 41(6): 905-916. |
[6] | ZHANG Haozhe, XUE Yayong, MA Yuanyuan, XUE Guoxuan. Carbon sequestration potential of oasis ecosystem in Xinjiang, China [J]. Arid Zone Research, 2024, 41(6): 998-1009. |
[7] | XU Chaojie, DOU Yan, MENG Qilin. Prediction of the standardized precipitation evapotranspiration index in the Xinjiang region using the EMD-GWO-LSTM model [J]. Arid Zone Research, 2024, 41(4): 527-539. |
[8] | SI Qi, FAN Haoran, DONG Wenming, LIU Xinping. Landscape ecological risk assessment and prediction for the Yarkant River Basin, Xinjiang, China [J]. Arid Zone Research, 2024, 41(4): 684-696. |
[9] | BAO Jiayu, LI Xianglong, HU Qiwen, LI Tao. Spatiotemporal characteristics of carbon emissions from energy consumption and the approach to energy structure adjustment in Xinjiang [J]. Arid Zone Research, 2024, 41(3): 490-498. |
[10] | YAO Junqiang. Change in atmospheric and surface water resource in Xinjiang [J]. Arid Zone Research, 2024, 41(2): 181-190. |
[11] | WU Mingjiang, QIU Juan, ZHENG Feng, LING Xiaobo, WANG Xinyu, YANG Yang, YANG Jiaxin, LIU Liqiang. Study on shrub species diversity and niche of wild fruit forest in Xinjiang [J]. Arid Zone Research, 2024, 41(12): 2094-2109. |
[12] | XU Yunhong, LIU Qiong, CHEN Yonghang, WEI Xin, LIU Xin, ZHANG Taixi, SHAO Weiling, YANG Hequn, ZHANG Chengming. Impact of land cover variations on surface albedo in Xinjiang and its surrounding Central Asian region [J]. Arid Zone Research, 2024, 41(10): 1649-1661. |
[13] | JIN Chenyang, DU Hongru. Characteristics of spatial and temporal changes and zoning of cultivated land resilience in Xinjiang [J]. Arid Zone Research, 2024, 41(10): 1778-1788. |
[14] | LI Xiaofeng, HUI Tingting, LI Yaoming, MAO Jiefei, WANG Guangyu, FAN Lianlian. Effects of different grazing management strategies on plant diversity in the mountain grassland of Xinjiang, China [J]. Arid Zone Research, 2024, 41(1): 124-134. |
[15] | WANG Xiang, LYU Haishen, ZHU Yonghua, GUO Chenyu. Application and comparison of two channel flood routing methods in Xinjiang mountainous areas [J]. Arid Zone Research, 2023, 40(8): 1240-1247. |
|