Arid Zone Research ›› 2022, Vol. 39 ›› Issue (3): 734-744.doi: 10.13866/j.azr.2022.03.07
Previous Articles Next Articles
DING Yan1(),XU Dehe1(),CAO Lianhai1,GUAN Xiangrong2
Received:
2021-10-12
Revised:
2021-12-30
Online:
2022-05-15
Published:
2022-05-30
Contact:
Dehe XU
E-mail:13007520896@163.com;1445073551@qq.com
DING Yan,XU Dehe,CAO Lianhai,GUAN Xiangrong. Applicability of the LSTM and ARIMA model in drought prediction based on CEEMD: A case study of Xinjiang[J].Arid Zone Research, 2022, 39(3): 734-744.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
ADF test of the original sequence"
SPI序列 | 单位根检验 | 临界值 | P值 | ||
---|---|---|---|---|---|
1% | 5% | 10% | |||
SPI1 | -8.0407 | -3.4419 | -2.8667 | -2.5695 | 1.8500e-12 |
SPI3 | -9.4801 | -3.4419 | -2.8666 | -2.5695 | 3.8938e-16 |
SPI6 | -6.7711 | -3.4420 | -2.8667 | -2.5695 | 2.6407e-09 |
SPI9 | -4.4529 | -3.4423 | -2.8668 | -2.5696 | 0.0002 |
SPI12 | -4.0259 | -3.4423 | -2.8668 | -2.5696 | 0.0013 |
SPI24 | -3.8011 | -3.4425 | -2.8669 | -2.5696 | 0.0029 |
Tab. 4
R2, RMSE and MAE values of the predicted results of four models"
时间尺度 | 模型 | R2 | RMSE | MAE |
---|---|---|---|---|
1个月 | LSTM | -0.0146 | 0.8681 | 0.6478 |
ARIMA | -0.0058 | 0.8643 | 0.6431 | |
CEEMD-LSTM | 0.2648 | 0.7389 | 0.5683 | |
CEEMD-ARIMA | 0.4488 | 0.6398 | 0.4828 | |
3个月 | LSTM | 0.4200 | 0.7906 | 0.6040 |
ARIMA | 0.4986 | 0.7350 | 0.5531 | |
CEEMD-LSTM | 0.5782 | 0.6742 | 0.5017 | |
CEEMD-ARIMA | 0.8246 | 0.4347 | 0.3355 | |
6个月 | LSTM | 0.6686 | 0.6595 | 0.4710 |
ARIMA | 0.6870 | 0.6410 | 0.4554 | |
CEEMD-LSTM | 0.7776 | 0.5402 | 0.4116 | |
CEEMD-ARIMA | 0.9153 | 0.3334 | 0.2397 | |
9个月 | LSTM | 0.7873 | 0.5732 | 0.3856 |
ARIMA | 0.8039 | 0.5503 | 0.3553 | |
CEEMD-LSTM | 0.8921 | 0.4082 | 0.2839 | |
CEEMD-ARIMA | 0.9619 | 0.2426 | 0.1789 | |
12个月 | LSTM | 0.8592 | 0.4858 | 0.3084 |
ARIMA | 0.8732 | 0.4610 | 0.2628 | |
CEEMD-LSTM | 0.9302 | 0.3420 | 0.2251 | |
CEEMD-ARIMA | 0.9793 | 0.1863 | 0.1271 | |
24个月 | LSTM | 0.8882 | 0.4266 | 0.2700 |
ARIMA | 0.9103 | 0.3822 | 0.2109 | |
CEEMD-LSTM | 0.9403 | 0.3119 | 0.1958 | |
CEEMD-ARIMA | 0.9846 | 0.1584 | 0.1019 |
[1] | 李夫鹏, 王正涛, 超能芳, 等. 利用Swarm星群探测亚马逊流域2015-2016年干旱事件[J]. 武汉大学学报·信息科学版, 2020, 45(4): 595-603. |
[ Li Fupeng, Wang Zhengtao, Chao Nengfang, et al. 2015-2016 drought event in the Amazon River basin as measured by Swarm constellation[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 595-603. ] | |
[2] | 田丰, 武建军, 刘雷震, 等. 1901-2015年华北平原干旱时空转移特征及热点区域探测[J]. 干旱区资源与环境, 2020, 34(6): 87-96. |
[ Tian Feng, Wu Jianjun, Liu Leizhen, et al. Spatiotemporal transferring characteristics of drought and its hotpots detection in North China Plain during 1901-2015[J]. Journal of Arid Land Resources and Environment, 2020, 34(6): 87-96. ] | |
[3] | 卢宝宝, 孙慧兰, 姜泉泉, 等. 近53 a新疆水分盈亏量时空变化特征[J]. 干旱区研究, 2021, 38(6): 1579-1589. |
[ Lu Baobao, Sun Huilan, Jiang Quanquan, et al. Spatiotemporal variation characteristics of the water budget in Xinjiang during the latest 53 years[J]. Arid Zone Research, 2021, 38(6): 1579-1589. ] | |
[4] | 宋玉鑫, 左其亭, 马军霞. 基于SWAT模型的开都河流域水文干旱变化特征及驱动因子分析[J]. 干旱区研究, 2021, 38(3): 610-617. |
[ Song Yuxin, Zuo Qiting, Ma Junxia. Variation and dynamic drivers of drought in Kaidu River Basin based on the SWAT model[J]. Arid Zone Research, 2021, 38(3): 610-617. ] | |
[5] |
Vasiliades L, Loukas A, Liberis N. A water balance derived drought index for Pinios River Basin, Greece[J]. Water Resources Management, 2011, 25(4): 1087-1101.
doi: 10.1007/s11269-010-9665-1 |
[6] |
方秀琴, 郭晓萌, 袁玲, 等. 随机森林算法在全球干旱评估中的应用[J]. 地球信息科学学报, 2021, 23(6): 1040-1049.
doi: 10.12082/dqxxkx.2021.200474 |
[ Fang Xiuqin, Guo Xiaomeng, Yuan Ling, et al. Application of random forest algorithm in global drought assessment[J]. Journal of Geo-Information Science, 2021, 23(6): 1040-1049. ]
doi: 10.12082/dqxxkx.2021.200474 |
|
[7] | 刘媛媛, 李霞, 王小博, 等. 2001-2018年中国-老挝交通走廊核心区植被稳定性对极端干旱的响应[J]. 生态学报, 2021, 41(7): 2537-2547. |
[ Liu Yuanyuan, Li Xia, Wang Xiaobo, et al. Vegetation stability in response to extreme droughts from 2001 to 2018 in the core area of China-Laos transportation corridors[J]. Acta Ecologica Sinica, 2021, 41(7): 2537-2547. ] | |
[8] | 周丽, 谢舒蕾, 吴彬. 基于CI和强度分析方法的四川冬春季干旱事件变化特征[J]. 自然灾害学报, 2020, 29(3): 36-44. |
[ Zhou Li, Xie Shulei, Wu Bin. Variation characteristics of the winter and spring drought events in Sichuan based on CI and Intensity analysis[J]. Journal of Natural Disasters, 2020, 29(3): 36-44. ] | |
[9] | 徐一丹, 任传友, 马熙达, 等. 基于SPI/SPEI指数的东北地区多时间尺度干旱变化特征对比分析[J]. 干旱区研究, 2017, 34(6): 1250-1262. |
[ Xu Yidan, Ren Chuanyou, Ma Xida, et al. Change of drought at multiple temporal scales based on SPI /SPEI in Northeast China[J]. Arid Zone Research, 2017, 34(6): 1250-1262. ] | |
[10] |
李明, 葛晨昊, 邓宇莹, 等. 黄土高原气象干旱和农业干旱特征及其相互关系研究[J]. 地理科学, 2020, 40(12): 2105-2114.
doi: 10.13249/j.cnki.sgs.2020.12.017 |
[ Li Ming, Ge Chenhao, Deng Yuying, et al. Meteorological and agricultural drought characteristics and their relationship across the Loess Plateau[J]. Scientia Geographica Sinica, 2020, 40(12): 2105-2114. ]
doi: 10.13249/j.cnki.sgs.2020.12.017 |
|
[11] |
Rezaei H, Faaljou H, Mansourfar G. Stock price prediction using deep learning and frequency decomposition[J]. Expert Systems with Applications, 2020, 169(12): 114332, doi: 10.1016/j.eswa.2020.114332.
doi: 10.1016/j.eswa.2020.114332 |
[12] |
徐岩岩, 常军. 基于DERF2.0模式1-52天最低温度逐日预报的检验评估[J]. 高原气象, 2018, 37(4): 1042-1050.
doi: 10.7522/j.issn.1000-0534.2017.00090 |
[ Xu Yanyan, Chang Jun. Evaluation of the minimum temperature forecast of 1-52 days based on DERF2.0 model[J]. Plateau Meteorology, 2018, 37(4): 1042-1050. ]
doi: 10.7522/j.issn.1000-0534.2017.00090 |
|
[13] |
Wu C, Wang J, Chen X, et al. A novel hybrid system based on multi-objective optimization for wind speed forecasting[J]. Renewable Energy, 2020, 146(8): 149-165.
doi: 10.1016/j.renene.2019.04.157 |
[14] | 王蕾, 王鹏新, 李俐, 等. 应用条件植被温度指数预测县域尺度小麦单产[J]. 武汉大学学报·信息科学版, 2018, 43(10): 1566-1573. |
[ Wang Lei, Wang Pengxin, et al. Wheat yield forecasting at county scale based on time series vegetation temperature condition index[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1566-1573. ] | |
[15] | 杨慧荣, 张玉虎, 崔恒建, 等. ARIMA和ANN模型的干旱预测适用性研究[J]. 干旱区地理, 2018, 41(5): 945-953. |
[ Yang Huirong, Zhang Yuhu, Cui Hengjian, et al. Applicability of ARIMA and ANN models for drought forecasting[J]. Arid Land Geography, 2018, 41(5): 945-953. ] | |
[16] |
Liu M D, Ding L, Bai Y L. Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction[J]. Energy Conversion and Management, 2021, 233: 113917, doi: 10.1016/j.enconman.2021.113917.
doi: 10.1016/j.enconman.2021.113917 |
[17] | 张建海, 张棋, 许德合, 等. ARIMA-LSTM组合模型在基于SPI干旱预测中的应用--以青海省为例[J]. 干旱区地理, 2020, 43(4): 1004-1013. |
[ Zhang Jianhai, Zhang Qi, Xu Dehe, et al. Application of a combined ARIMA-LSTM model based on SPI for the forecast of drought: A case study in Qinghai Province[J]. Arid Land Geography, 2020, 43(4): 1004-1013. ] | |
[18] | 王亦斌, 孙涛, 梁雪春, 等. 基于EMD-LSTM模型的河流水量水位预测[J]. 水利水电科技进展, 2020, 40(6): 40-47. |
[ Wang Yibin, Sun Tao, Liang Xuechun, et al. Prediction of river water flow and water level based on EMD-LSTM model[J]. Advances in Science and Technology of Water Resources, 2020, 40(6): 40-47. ] | |
[19] | 刘艳, 杨耘, 聂磊, 等. 玛纳斯河出山口径流EEMD-ARIMA预测[J]. 水土保持研究, 2017, 24(6): 273-280, 285. |
[ Liu Yan, Yang Yun, Nie Lei, et al. The EEMD-ARIMA prediction of runoff at mountain pass of Manas River[J]. Research of Soil and Water Conservation, 2017, 24(6): 273-280, 285. ] | |
[20] | 杨倩, 秦莉, 高培, 等. 基于EEMD-LSTM模型的天山北坡经济带年降水量预测[J]. 干旱区研究, 2021, 38(5): 1235-1243. |
[ Yang Qian, Qin Li, Gao Pei, et al. Prediction of annual precipitation in the northern slope economic belt of Tianshan Mountains based on a EEMD-LSTM model[J]. Arid Zone Research, 2021, 38(5): 1235-1243. ] | |
[21] | Zhang X, Wu X, He S, et al. Precipitation forecast based on CEEMD-LSTM coupled model[J]. Water Science & Technology Water Supply, 2021, 21(22): 1-17. |
[22] | 许德合, 丁严, 张棋, 等. EEMD-ARIMA在干旱预测中的应用--以新疆维吾尔自治区为例[J]. 中国农村水利水电, 2021(7): 1-11. |
[ Xu Dehe, Ding Yan, Zhang Qi, et al. Application of the EEMD-ARIMA combined model in drought prediction: A case study in Xinjiang Uygur Autonomous Region[J]. China Rural Water and Hydropower, 2021(7): 1-11. ] | |
[23] |
Tsakiris G, Vangelis H. Towards a drought watch system based on spatial SPI[J]. Water Resources Management, 2004, 18(1): 1-12.
doi: 10.1023/B:WARM.0000015410.47014.a4 |
[24] | Moreira E E. SPI drought class prediction using log-linear models applied to wet and dry seasons[J]. Physics and Chemistry of the Earth, 2016, 94: 136-145. |
[25] |
Alquraish M, Abuhasel K A, Alqahtani A S,et al. SPI-based hybrid hidden Markov-GA, ARIMA-GA, and ARIMA-GA-ANN models for meteorological drought forecasting[J]. Sustainability, 2021, 13(22): 12576, doi: 10.3390/su132212576.
doi: 10.3390/su132212576 |
[26] | Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995. |
[27] |
Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1: 1-41.
doi: 10.1142/S1793536909000047 |
[28] |
Yeh J R, Shieh J S, Huang N E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156.
doi: 10.1142/S1793536910000422 |
[29] | 孙堃, 赵萌萌, 沈美娜, 等. 基于CEEMD和模糊熵的随机森林风力发电功率预测[J]. 智慧电力, 2019, 47(10): 36-43. |
[ Sun Kun, Zhao Mengmeng, Shen Meina, et al. Wind power forecasting with random forest based on CEEMD and fuzzy entropy[J]. Smart Power, 2019, 47(10): 36-43. ] | |
[30] | Box G E P, Jenkins G M. Time series Analysis: Forecasting and Control[M]. San Francisco: Holden Day, 1976. |
[31] | Dilling S, Macvicar B J. Cleaning high-frequency velocity profile data with autoregressive moving average (ARMA) models[J]. Flow Measurement & Instrumentation, 2017, 54: 68-81. |
[32] | 左秀霞. 带高次趋势项的ADF单位根检验[J]. 数量经济技术经济研究, 2019, 36(1): 152-169. |
[ Zuo Xiuxia. ADF unit rot test with high order trend term[J]. The Journal of Quantitative & Technical Economics, 2019, 36(1): 152-169. ] | |
[33] |
Liu Q, Zhang G, Ali S, et al. SPI-based drought simulation and prediction using ARMA-GARCH model[J]. Applied Mathematics and Computation, 2019, 355: 96-107.
doi: 10.1016/j.amc.2019.02.058 |
[34] |
Adikari K E, Shrestha S, Ratnayake D T, et al. Evaluation of artificial intelligence models for flood and drought forecasting in arid and tropical regions[J]. Environmental Modelling & Software, 2021, 144(4): 105136, doi: 10.1016/j.envsoft.2021.105136.
doi: 10.1016/j.envsoft.2021.105136 |
[1] | LI Xiaofeng, HUI Tingting, LI Yaoming, MAO Jiefei, WANG Guangyu, FAN Lianlian. Effects of different grazing management strategies on plant diversity in the mountain grassland of Xinjiang, China [J]. Arid Zone Research, 2024, 41(1): 124-134. |
[2] | WANG Xiang, LYU Haishen, ZHU Yonghua, GUO Chenyu. Application and comparison of two channel flood routing methods in Xinjiang mountainous areas [J]. Arid Zone Research, 2023, 40(8): 1240-1247. |
[3] | WANG Chao, MA Zhancang, PAN Chengnan, WU Xingyue, SONG Wendan, YAN Ping. New records of Amaranthus in Xinjiang [J]. Arid Zone Research, 2023, 40(8): 1280-1288. |
[4] | Gulistan ANWAR, Turgun NURDIN, Dilhumar ABDUKERIM, Mamtimin SULAYMAN. New records of mosses of Leskeaceae to Xinjiang [J]. Arid Zone Research, 2023, 40(8): 1289-1293. |
[5] | LI Hong, LI Zhongqin, CHEN Puchen, PENG Jiajia. Spatio-temporal variation of snow cover in Altai Mountains of Xinjiang in recent 20 years and its influencing factors [J]. Arid Zone Research, 2023, 40(7): 1040-1051. |
[6] | XU Junli, HAN Haidong, WANG Jian. Recharge sources and potential source areas of atmospheric PM2.5 in Xinjiang [J]. Arid Zone Research, 2023, 40(6): 874-884. |
[7] | XUE Yibo, HUANG Shuangyan, ZHANG Xiaoxiao, LEI Jiaqiang, LI Shengyu. Study on the strong winter airborne dustfall mixed rain and snow events in Xinjiang, China in 2018 [J]. Arid Zone Research, 2023, 40(5): 681-690. |
[8] | ZHAO Keming, SUN Mingjing, LI Xia, SHI Junjie, AN Dawei, XU Tingting. Comparison of the distribution and applicability of two typical atmospheric diffusion indices in Xinjiang [J]. Arid Zone Research, 2023, 40(5): 691-702. |
[9] | ZHAO Yuzhi,YANG Jianjun. Spatio-temporal pattern of water resource carrying capacity, coupling and coordination of subsystems in southern Xinjiang [J]. Arid Zone Research, 2023, 40(2): 213-223. |
[10] | DONG Hanlin, WANG Wenting, XIE Yun, Aydana YESINALI, JIANG Yuantian, XU Jiaqi. Climate dry-wet conditions, changes, and their driving factors in Xinjiang [J]. Arid Zone Research, 2023, 40(12): 1875-1884. |
[11] | WU Xiaodan,LUO Min,MENG Fanhao,SA Chula,YIN Chaohua,BAO Yuhai. New characteristics of spatio-temporal evolution of extreme climate events in Xinjiang under the background of warm and humid climate [J]. Arid Zone Research, 2022, 39(6): 1695-1705. |
[12] | JIANG Lei,ZHAO Yi,ZHANG Pengwei,HE Liang,BAI Xiang. Study on influence degree of phreatic evaporation based on hydrogen and oxygen isotope characteristics [J]. Arid Zone Research, 2022, 39(6): 1793-1800. |
[13] | Mamtimin SULAYMAN,Alanur KAHAR,LIANG Lingwei,Mamurbieke MAKAN,WANG Pengjun. Discovery of a moss family Schistostegaceae in Xinjiang, China [J]. Arid Zone Research, 2022, 39(6): 1852-1855. |
[14] | Gulistan ANWAR,WANG Pengjun,Alanur KAHAR,Mamtimin SULAYMAN. Buxbaumia viridis, a newly recorded species in Xinjiang, China and its historical correction in China’s distribution [J]. Arid Zone Research, 2022, 39(6): 1856-1861. |
[15] | LU Yayan,XU Xiaoliang,LI Jicai,FENG Xiaohua,LIU Luyuan. Research on the spatio-temporal variation of carbon storage in the Xinjiang Tianshan Mountains based on the InVEST model [J]. Arid Zone Research, 2022, 39(6): 1896-1906. |
|