Arid Zone Research ›› 2022, Vol. 39 ›› Issue (1): 258-269.doi: 10.13866/j.azr.2022.01.25
Previous Articles Next Articles
SUN Guili1,2(),LU Haiyan1,ZHENG Jiaxiang1,LIU Yanyan1,RAN Yajun1
Received:
2020-12-21
Revised:
2021-02-16
Online:
2022-01-15
Published:
2022-01-24
SUN Guili,LU Haiyan,ZHENG Jiaxiang,LIU Yanyan,RAN Yajun. Spatio-temporal variation of ecological vulnerability in Xinjiang and driving force analysis[J].Arid Zone Research, 2022, 39(1): 258-269.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Data source and processing method"
数据名称 | 数据来源 | 数据处理 |
---|---|---|
DEM数据 | 地理空间数据云( | 选取的地形因子主要包括高程、坡度、地形起伏度等因子,采用ArcGIS 10.2的Spatial Analyst 模块的Slope和Surface Analysis工具对新疆DEM影像计算坡度和地形起伏度。 |
年平均降水量 | 中国气象数据网( | 选取新疆37个国家一般气象站每月气象数据,温度和降水数据以月为尺度的点数据,时间周期为2000年、2005年、2010年、2015年和2018年,采用反距离权重法对月气象点数据进行插值,得到5期共60个月的气象因子栅格数据。 |
≥10 ℃积温栅格数据 | ||
人口密度 | 《中国统计年鉴》(2001—2019)、《新疆统计年鉴》(2001—2019)、新疆国民经济和社会发展统计公报[ | 通过统计年鉴、国民经济和社会发展统计公报,统计整理得到新疆各地州的社会经济指标数据,采用反距离权重法进行插值,得到2000年、2005年、2010年、2015年和2018年5期的社会经济栅格数据。 |
人均GDP | ||
人均耕地面积 | ||
第二产业比重 | ||
归一化植被指数(NDVI) 土地利用数据 干燥度 土壤侵蚀数据 | 中国科学院资源环境科学数据中心( | 通过像元二分模型和栅格计算器计算研究区归一化植被指数。 |
所有空间数据统一重采样为1 km×1 km,为保证采用的指标具有良好的空间重合性,所有栅格数据均统一到同一投影和坐标系(Albers地图投影和Krasovsky-1940坐标系)。 |
Tab. 2
Calculation formula and parameter description of SRP model"
指标名称 | 计算公式 | 参数说明 |
---|---|---|
生境质量指数 | ||
生态敏感性 | S为生态敏感性;W1生态敏感性的权重;Si生态敏感性指标值。 | |
生态恢复力 | R为生态恢复力;W2生态恢复力的权重;Ri生态恢复力指标值。 | |
生态压力度 | P为生态压力度;W3生态压力度的权重;Pi生态压力度指标值。 | |
生态脆弱性指数 | EVIn为某一年的生态脆弱性指数,其值越大生态环境越脆弱,生态系统受到的破坏程度越明显;x1, x2, …, xk为对应指标权重;PC1, PC2, …, PCk为累积贡献率大于85%的前k个主成分,n为年份。 | |
生态脆弱性 综合指数 | EVSI为生态脆弱性综合指数; |
Tab. 4
Principal component analysis results in Xinjiang from 2000 to 2018"
主成分 | 2000年 | 2005年 | 2010年 | 2015年 | 2018年 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
特征值 | 贡献率/% | 累计贡献率/% | 特征值 | 贡献率/% | 累计贡献率/% | 特征值 | 贡献率/% | 累计贡献率/% | 特征值 | 贡献率/% | 累计贡献率/% | 特征值 | 贡献率/% | 累计贡献率/% | |||||
1 | 0.17 | 37.79 | 37.79 | 0.18 | 38.67 | 38.67 | 0.16 | 37.06 | 37.06 | 0.16 | 37.39 | 37.39 | 0.17 | 36.04 | 36.04 | ||||
2 | 0.10 | 23.07 | 60.86 | 0.11 | 22.73 | 61.39 | 0.10 | 23.18 | 60.25 | 0.10 | 23.02 | 60.40 | 0.10 | 20.62 | 56.65 | ||||
3 | 0.06 | 14.37 | 75.23 | 0.06 | 12.77 | 74.17 | 0.07 | 15.61 | 75.85 | 0.05 | 12.58 | 72.98 | 0.06 | 11.73 | 68.38 | ||||
4 | 0.03 | 6.29 | 81.52 | 0.03 | 6.66 | 80.83 | 0.03 | 6.34 | 82.19 | 0.03 | 6.70 | 79.68 | 0.04 | 8.38 | 76.76 | ||||
5 | 0.02 | 5.05 | 86.57 | 0.03 | 5.57 | 86.40 | 0.02 | 4.89 | 87.08 | 0.03 | 6.16 | 85.84 | 0.03 | 6.29 | 83.05 | ||||
6 | 0.02 | 3.77 | 90.34 | 0.02 | 4.05 | 90.44 | 0.01 | 3.28 | 90.36 | 0.02 | 4.10 | 89.94 | 0.02 | 4.95 | 88.00 | ||||
7 | 0.01 | 2.72 | 93.06 | 0.01 | 2.98 | 93.42 | 0.01 | 2.75 | 93.11 | 0.02 | 3.68 | 93.63 | 0.02 | 4.25 | 92.25 | ||||
8 | 0.01 | 2.27 | 95.33 | 0.01 | 2.49 | 95.91 | 0.01 | 2.36 | 95.47 | 0.01 | 2.06 | 95.69 | 0.02 | 3.23 | 95.48 | ||||
9 | 0.01 | 1.37 | 96.70 | 0.01 | 1.40 | 97.31 | 0.01 | 1.46 | 96.93 | 0.01 | 1.49 | 97.18 | 0.01 | 1.35 | 96.83 | ||||
10 | 0.01 | 1.12 | 97.81 | 0.01 | 1.21 | 98.52 | 0.00 | 1.08 | 98.01 | 0.00 | 1.06 | 98.24 | 0.01 | 1.26 | 98.09 | ||||
11 | 0.00 | 0.78 | 98.59 | 0.00 | 0.47 | 98.99 | 0.00 | 0.65 | 98.67 | 0.00 | 0.53 | 98.76 | 0.00 | 0.88 | 98.97 | ||||
12 | 0.00 | 0.63 | 99.22 | 0.00 | 0.30 | 99.29 | 0.00 | 0.41 | 99.07 | 0.00 | 0.34 | 99.10 | 0.00 | 0.37 | 99.34 | ||||
13 | 0.00 | 0.25 | 99.47 | 0.00 | 0.26 | 99.55 | 0.00 | 0.34 | 99.42 | 0.00 | 0.31 | 99.42 | 0.00 | 0.28 | 99.61 | ||||
14 | 0.00 | 0.24 | 99.71 | 0.00 | 0.22 | 99.77 | 0.00 | 0.24 | 99.66 | 0.00 | 0.28 | 99.70 | 0.00 | 0.21 | 99.82 | ||||
15 | 0.00 | 0.21 | 99.91 | 0.00 | 0.16 | 99.93 | 0.00 | 0.20 | 99.86 | 0.00 | 0.13 | 99.83 | 0.00 | 0.11 | 99.93 | ||||
16 | 0.00 | 0.05 | 99.96 | 0.00 | 0.05 | 99.98 | 0.00 | 0.09 | 99.95 | 0.00 | 0.12 | 99.95 | 0.00 | 0.05 | 99.98 | ||||
17 | 0.00 | 0.04 | 100 | 0.00 | 0.02 | 100 | 0.00 | 0.05 | 100 | 0.00 | 0.05 | 100 | 0.00 | 0.02 | 100 |
Tab. 7
Area transfer matrix of fragile areas in Xinjiang /km2"
脆弱等级 | 2018年 | |||||
---|---|---|---|---|---|---|
微度脆弱 | 轻度脆弱 | 中度脆弱 | 重度脆弱 | 极度脆弱 | ||
2000年 | 微度脆弱 | 36117.16 | 12027.91 | 5579.62 | 200.47 | 0.00 |
轻度脆弱 | 91913.32 | 105010.38 | 62277.87 | 35148.24 | 2973.57 | |
中度脆弱 | 41128.79 | 115768.69 | 108251.23 | 84228.82 | 34847.54 | |
重度脆弱 | 5846.90 | 38589.56 | 80587.03 | 127295.40 | 88137.89 | |
极度脆弱 | 601.40 | 5212.10 | 26795.52 | 246505.43 | 296655.16 |
Tab. 8
Interaction between key indicators"
交互类型 | q值 | 交互类型 | q值 |
---|---|---|---|
农业依赖度∩景观恢复力 | 0.325 | 景观破碎度∩生境质量指数 | 0.270 |
农业依赖度∩景观破碎度 | 0.455 | 景观破碎度∩植被覆盖度 | 0.246 |
农业依赖度∩生境质量指数 | 0.446 | 景观破碎度∩人口密度 | 0.308 |
农业依赖度∩植被覆盖度 | 0.333 | 景观破碎度∩土地垦殖率 | 0.110 |
农业依赖度∩年均降水量 | 0.114 | 生境质量指数∩植被覆盖度 | 0.322 |
农业依赖度∩土地垦殖率 | 0.276 | 生境质量指数∩人口密度 | 0.114 |
农业依赖度∩高程 | 0.057 | 生境质量指数∩土地垦殖率 | 0.257 |
景观恢复力∩景观破碎度 | 0.172 | 第二产业比重∩年均降水量 | 0.119 |
景观恢复力∩生境质量指数 | 0.453 | 植被覆盖度∩人口密度 | 0.279 |
景观恢复力∩植被覆盖度 | 0.295 | 植被覆盖度∩土地垦殖率 | 0.323 |
景观恢复力∩人口密度 | 0.361 | 人均GDP∩年均降水量 | 0.113 |
景观恢复力∩土地垦殖率 | 0.124 | 人口密度∩土地垦殖率 | 0.090 |
[1] |
Turvey R. Vulnerability assessment of developing countries: The case of small island developing states[J]. Development Policy Review, 2007, 25(2): 243-264.
doi: 10.1111/dpr.2007.25.issue-2 |
[2] |
Mahapatra M, Ramakrishnan R, Rajawat A S. Coastal vulnerability assessment using analytical hierarchical process for South Gujarat coast, India[J]. Natural Hazards, 2015, 76(1): 139-159.
doi: 10.1007/s11069-014-1491-y |
[3] | 曹诗颂, 王艳慧, 段福洲, 等. 中国贫困地区生态环境脆弱性与经济贫困的耦合关系——基于连片特困区714个贫困县的实证分析[J]. 应用生态学报, 2016, 27(8): 2614-2622. |
[Cao Shisong, Wang Yanhui, Duan Fuzhou, et al. Coupling between ecological China: Empirical analysis vulnerability and economic poverty in contiguous destitute areas of 714 poverty-stricken counties[J]. Chinese Journal of Applied Ecology, 2016, 27(8): 2614-2622. ] | |
[4] | 王贝贝, 丁明军, 管琪卉, 等. 基于格网的南昌市生态环境脆弱性评价[J]. 生态学报, 2019, 39(15): 5460-5472. |
[Wang Beibei, Ding Mingjun, Guan Qihui, et al. Gridded assessment of eco-environmental vulnerability in Nanchang city[J]. Acta Ecologica Sinica, 2019, 39(15): 5460-5472. ] | |
[5] | 王让会, 樊自立. 干旱区内陆河流域生态脆弱性评价——以新疆塔里木河流域为例[J]. 生态学杂志, 2001, 20(3): 63-68. |
[Wang Ranghui, Fan Zili. Ecological fragility assessment on continental river basin in arid zone taking Tarim River basin, Xinjiang as an example[J]. Chinese Journal of Ecology, 2001, 20(3): 63-68. ] | |
[6] | 谢霞, 王宏卫. 艾比湖区域生态脆弱性评估与保护[J]. 新疆农业科学, 2012, 49(3): 531-536. |
[Xie Xia, Wang Hongwei, Eco-environmental vulnerability evaluation and countermeasures in Ebinur lake region[J]. Xinjiang Agricultural Sciences, 2012, 49(3): 531-536. ] | |
[7] | 万洪秀, 孙占东, 王润. 博斯腾湖湿地生态脆弱性评价研究[J]. 干旱区地理, 2006, 29(2): 248-254. |
[Wan Hongxiu, Sun Zhandong, Wang Run. Study on the evaluation of ecological frangibility of the wetlands in the Bosten Lake region[J]. Arid Land Geography, 2006, 29(2): 248-254. ] | |
[8] | 师庆东, 王智, 贺龙梅, 等. 基于气候、地貌、生态系统的景观分类体系——以新疆地区为例[J]. 生态学报, 2014, 34(12): 3359-3367. |
[Shi Qingdong, Wang Zhi, He Longmei, et al. Landscape classification system based on climate, landform, ecosystem: A case study of Xinjiang area[J]. Acta Ecologica Sinica, 2014, 34(12): 3359-3367. ] | |
[9] | 张宁宁, 房世峰, 杜加强, 等. 基于LUCC的新疆沙尘源空间格局及转化机理分析[J]. 干旱区地理, 2018, 41(5): 1053-1063. |
[Zhang Ningning, Fang Shifeng, Du Jiaqiang, et al. Transformation and spatio-temporal distribution of sand-dust sources in Xinjiang based on LUCC[J]. Arid Land Geography, 2018, 41(5): 1053-1063. ] | |
[10] | 郭兵, 孔维华, 姜琳. 西北干旱荒漠生态区脆弱性动态监测及驱动因子定量分析[J]. 自然资源学报, 2018, 33(3): 412-424. |
[Guo Bing, Kong Weihua, Jiang Lin. Dynamic monitoring of ecological vulnerability in arid desert ecological region of Northwest China and the quantitative analysis of its driving forces[J]. Journal of Natural Resources, 2018, 33(3): 412-424. ] | |
[11] | 新疆维吾尔自治区统计局. 国家统计局新疆调查总队. 新疆维吾尔自治区2018年国民经济和社会发展统计公报[N]. 新疆日报, 2019-03-22. |
[Statistics Bureau of Xinjiang Uygur Autonomous Region. Xinjiang Survey Team National Bureau of Statistics. Statistical Communique of National Economic and Social Development in Xinjiang Uygur Autonomous Region in 2018[N]. Xinjiang Daily, 2019-03-22. ] | |
[12] | 张启. 长白山地区土地利用/覆被变化对生态环境脆弱性的影响评价[D]. 延吉: 延边大学, 2019. |
[Zhang Qi. The Impact Assessment of Ecological Enviorment Vulnerability Based on Land Use/Cover Change in Changbai Mountain Area[D]. Yanji: Yanbian University, 2019. ] | |
[13] | 马骏. 三峡库区重庆段生态脆弱性动态评价[D]. 重庆: 西南大学, 2014. |
[Ma Jun. Dynamic Evaluation of Ecological Vulnerability in the Three Gorges Reservoir Region in Chongqing Section, China[D]. Chongqing: Southwest University, 2014. ] | |
[14] | 刘正佳, 于兴修, 李蕾, 等. 基于SRP概念模型的沂蒙山区生态环境脆弱性评价[J]. 应用生态学报, 2011, 22(8): 2084-2090. |
[Liu Zhengjia, Yu Xingxiu, Li Lei, et al. Spatio-temporal change of ecological vulnerability in Yimeng Mountain based on SRP model and driving force analysis[J]. Journal of Applied Ecology, 2011, 22(8): 2084-2090. ] | |
[15] | 韦晶, 郭亚敏, 孙林, 等. 三江源地区生态环境脆弱性评价[J]. 生态学杂志, 2015, 34(7): 1968-1975. |
[Wei Jing, Guo Yamin, Sun Lin, et al. Evaluation of ecological environment vulnerability in the Three-River Source region[J]. Journal of Ecology, 2015, 34(7): 1968-1975. ] | |
[16] | 张行, 陈海, 史琴琴, 等. 陕西省景观生态脆弱性时空演变及其影响因素[J]. 干旱区研究, 2020, 37(2): 496-505. |
[Zhang Hang, Chen Hai, Shi Qinqin, et al. Spatio-temporal evolution and driving factors of landscape ecological vulnerability in Shaanxi Province[J]. Arid Zone Research, 2020, 37(2): 496-505. ] | |
[17] |
Zang Z, Zou X, Zuo P, et al. Impact of landscape patterns on ecological vulnerability and ecosystem service values: An empirical analysis of Yancheng Nature Reserve in China[J]. Ecological Indicators, 2017, 72: 142-152.
doi: 10.1016/j.ecolind.2016.08.019 |
[18] | 杨海娟, 温晓金, 刘焱序, 等. 秦岭土石山区土地利用程度对生态恢复力的影响评价[J]. 水土保持通报, 2012, 32(4): 261-266. |
[Yang Haijuan, Wen Xiaojin, Liu Yanxu, et al. Impact evaluation of land use degree on ecological resilience in Qinling earth-rock mountainous area[J]. Bulletin of Soil and Water Conservation, 2012, 32(4): 261-266. ] | |
[19] |
王俊, 杨新军, 刘文兆. 半干旱区社会-生态系统干旱恢复力的定量化研究[J]. 地理科学进展, 2010, 29(11): 1385-1390.
doi: 10.11820/dlkxjz.2010.11.028 |
[Wang Jun, Yang Xinjun, Liu Wenzhao. Quantitative research on drought resilience of social-ecosystem in semi-arid area[J]. Progress in Geography, 2010, 29(11): 1385-1390. ]
doi: 10.11820/dlkxjz.2010.11.028 |
|
[20] | 赵先贵, 马彩虹, 高利峰, 等. 基于生态压力指数的不同尺度区域生态安全评价[J]. 中国生态农业学报, 2007, 15(6): 135-138. |
[Zhao Xiangui, Ma Caihong, Gao Lifeng, et al. Evaluation of regional ecological security at different ccales based on ecological pressure index[J]. Chinese Journal of Eco-Agriculture, 2007, 15(6): 135-138. ] | |
[21] | 姚雄, 余坤勇, 刘健, 等. 南方水土流失严重区的生态脆弱性时空演变[J]. 应用生态学报, 2016, 27(3): 735-745. |
[Yao Xiong, Yu Kunyong, Liu Jian, et al. Temporal and spatial evolution of ecological vulnerability in the severe soil erosion area in south China[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 735-745. ] | |
[22] |
Fatemi F, Ardalan A, Aguirre B, et al. Social vulnerability indicator in disasters: Fingdings from a systematic review[J]. International Journal of Disaster Risk Reduction, 2017, 22: 219-227.
doi: 10.1016/j.ijdrr.2016.09.006 |
[23] |
王钰, 胡宝清. 西江流域生态脆弱性时空分异及其驱动机制研究[J]. 地球信息科学学报, 2018, 20(7): 947-956.
doi: 10.12082/dqxxkx.2018.170633 |
[Wang Yu, Hu Baoqing. Study on the spatial and temporal differentiation of ecological vulnerability in Xijiang River basin and its driving mechanism[J]. Journal of Geo-information Science, 2018, 20(7): 947-956. ]
doi: 10.12082/dqxxkx.2018.170633 |
|
[24] | 付刚, 白加德, 齐月, 等. 基于GIS的北京市生态脆弱性评价[J]. 生态与农村环境学报, 2018, 34(9): 830-839. |
[Fu Gang, Bai Jiade, Qi Yue, et al. Evaluation of ecological vulnerability in Beijing based on GIS[J]. Journal of Ecology and Rural Environment, 2018, 34(9): 830-839. ] | |
[25] | 张德君, 高航, 杨俊, 等. 基于GIS的南四湖湿地生态脆弱性评价[J]. 资源科学, 2014, 36(4): 874-882. |
[Zhang Dejun, Gao Hang, Yang Jun, et al. Evaluation of ecological vulnerability of Nansi lake wetland based on GIS[J]. Resources Science, 2014, 36(4): 874-882. ] | |
[26] |
Wang J F, LI X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region[J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127.
doi: 10.1080/13658810802443457 |
[27] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[Wang Jinfeng, Xu Chendong. Geodetector: Principles and prospects[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. ]
doi: 10.11821/dlxb201701010 |
|
[28] | 黄莹, 包安明, 刘海隆, 等. 基于景观格局的新疆生态脆弱性综合评价研究[J]. 干旱地区农业研究, 2009, 27(3): 261-266. |
[Huang Ying, Bao Anming, Liu Hailong, et al. Research on comprehensive evaluation of Xinjiang ecological vulnerability based on landscape pattern[J]. Agricultural Research in the Arid Areas, 2009, 27(3): 261-266. ] | |
[29] | 郭亚淑. 福州市土地利用/覆被变化对生态环境脆弱性的影响评价[D]. 福州: 福建农林大学, 2016. |
[Guo Yashu. The Impact Assessment of Eco-environment Based on Land Use/Cover Change in Fuzhou City[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. ] | |
[30] | 艾丽娅, 王少军, 张志. 1977—2017年锡林郭勒盟中部草原植被覆盖时空演变及预测[J]. 水土保持通报, 2019, 39(5): 249-256, 277, 347. |
[Ai Liya, Wang Shaojun, Zhang Zhi. . Spatio-temporal evolution and Spatio-temporal evolution and prediction of grassland vegetation coverage in central Xilin Gol League from 1977 to 2017[J]. Bulletin of Soil and Water Conservation, 2019, 39(5): 249-256, 277, 347. ] | |
[31] | 于琳. 新疆绿洲生态经济系统可持续发展研究[D]. 重庆: 西南大学, 2006. |
[Yu Lin. Research on Sustainable Development of Xinjiang Oasis Eco-economy System[D]. Chongqing: Southwest University, 2006. ] | |
[32] |
鲁大铭, 石育中, 李文龙, 等. 西北地区县域脆弱性时空格局演变[J]. 地理科学进展, 2017, 36(4): 404-415.
doi: 10.18306/dlkxjz.2017.04.002 |
[Lu Daming, Shi Yuzhong, Li Wenlong, et al. Spatio-temporal change of vulnerability in counties of Northwest China[J]. Progress in Geography, 2017, 36(4): 404-415. ]
doi: 10.18306/dlkxjz.2017.04.002 |
|
[33] | 茹克亚·萨吾提, 阿不都艾尼·阿不里, 李虎, 等. 基于遥感生态指数模型的阜康市生态环境动态变化监测与评价[J]. 水土保持研究, 2020, 27(1): 283-289, 297. |
[Rukeya Sawuti, Abuduaini Abuli, Li Hu, et al. Dynamic monitoring and analysis fukang city based ecological environment in RSEI model[J]. Research of Soil and Water Conscrvation, 2020, 27(1): 283-289, 297. ] | |
[34] |
Pei H, Fang S F, Lin L, et al. Methods and applications for ecological vulnerability evaluation in a hyper-arid oasis: A case study of the Turpan Oasis, China[J]. Environmental Earth Sciences, 2015, 74(2): 1449-1461.
doi: 10.1007/s12665-015-4134-z |
[1] | LI Xiaofeng, HUI Tingting, LI Yaoming, MAO Jiefei, WANG Guangyu, FAN Lianlian. Effects of different grazing management strategies on plant diversity in the mountain grassland of Xinjiang, China [J]. Arid Zone Research, 2024, 41(1): 124-134. |
[2] | CHEN Aijun,Yin . Spatiotemporal distribution of precipitation in five Central Asian countries based on FY-4A quantitative precipitation estimates [J]. Arid Zone Research, 2023, 40(9): 1369-1381. |
[3] | WANG Xiang, LYU Haishen, ZHU Yonghua, GUO Chenyu. Application and comparison of two channel flood routing methods in Xinjiang mountainous areas [J]. Arid Zone Research, 2023, 40(8): 1240-1247. |
[4] | WANG Chao, MA Zhancang, PAN Chengnan, WU Xingyue, SONG Wendan, YAN Ping. New records of Amaranthus in Xinjiang [J]. Arid Zone Research, 2023, 40(8): 1280-1288. |
[5] | Gulistan ANWAR, Turgun NURDIN, Dilhumar ABDUKERIM, Mamtimin SULAYMAN. New records of mosses of Leskeaceae to Xinjiang [J]. Arid Zone Research, 2023, 40(8): 1289-1293. |
[6] | LI Hong, LI Zhongqin, CHEN Puchen, PENG Jiajia. Spatio-temporal variation of snow cover in Altai Mountains of Xinjiang in recent 20 years and its influencing factors [J]. Arid Zone Research, 2023, 40(7): 1040-1051. |
[7] | MENG Chengfeng, ZHONG Tao, ZHENG Jianghua, WANG Nan, LIU Zexuan, REN Xiangyuan. Analysis of temporal and spatial characteristics and driving forces of Kunlun glacial lakes [J]. Arid Zone Research, 2023, 40(7): 1094-1106. |
[8] | QI Runze, PAN Jinghu. Spatial and temporal evolution of ecological vulnerability and its influencing factors in the Hehuang area [J]. Arid Zone Research, 2023, 40(6): 1002-1013. |
[9] | XU Junli, HAN Haidong, WANG Jian. Recharge sources and potential source areas of atmospheric PM2.5 in Xinjiang [J]. Arid Zone Research, 2023, 40(6): 874-884. |
[10] | XUE Yibo, HUANG Shuangyan, ZHANG Xiaoxiao, LEI Jiaqiang, LI Shengyu. Study on the strong winter airborne dustfall mixed rain and snow events in Xinjiang, China in 2018 [J]. Arid Zone Research, 2023, 40(5): 681-690. |
[11] | ZHAO Keming, SUN Mingjing, LI Xia, SHI Junjie, AN Dawei, XU Tingting. Comparison of the distribution and applicability of two typical atmospheric diffusion indices in Xinjiang [J]. Arid Zone Research, 2023, 40(5): 691-702. |
[12] | ZHAO Yuzhi,YANG Jianjun. Spatio-temporal pattern of water resource carrying capacity, coupling and coordination of subsystems in southern Xinjiang [J]. Arid Zone Research, 2023, 40(2): 213-223. |
[13] | DONG Hanlin, WANG Wenting, XIE Yun, Aydana YESINALI, JIANG Yuantian, XU Jiaqi. Climate dry-wet conditions, changes, and their driving factors in Xinjiang [J]. Arid Zone Research, 2023, 40(12): 1875-1884. |
[14] | WU Xiaodan,LUO Min,MENG Fanhao,SA Chula,YIN Chaohua,BAO Yuhai. New characteristics of spatio-temporal evolution of extreme climate events in Xinjiang under the background of warm and humid climate [J]. Arid Zone Research, 2022, 39(6): 1695-1705. |
[15] | JIANG Lei,ZHAO Yi,ZHANG Pengwei,HE Liang,BAI Xiang. Study on influence degree of phreatic evaporation based on hydrogen and oxygen isotope characteristics [J]. Arid Zone Research, 2022, 39(6): 1793-1800. |
|