Arid Zone Research ›› 2021, Vol. 38 ›› Issue (6): 1590-1600.doi: 10.13866/j.azr.2021.06.11
• Weather and Climate • Previous Articles Next Articles
LIU Lu(),LIU Puxing(),ZHANG Wangxiong,SI Wenyang,QIAO Xuemei
Received:
2021-01-04
Revised:
2021-03-01
Online:
2021-11-15
Published:
2021-11-29
Contact:
Puxing LIU
E-mail:liul3191@163.com;liupx751228@163.com
LIU Lu,LIU Puxing,ZHANG Wangxiong,SI Wenyang,QIAO Xuemei. Variation characteristics of extreme warm events from 1961 to 2017 and projection for future scenarios in Xinjiang, China[J].Arid Zone Research, 2021, 38(6): 1590-1600.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Information of 14 CMIP6 climate models"
模式名称 | 机构及所属国家 | 空间分辨率 |
---|---|---|
AWI-CM-1-1-MR | AWI,德国 | 0.97°×0.93° |
BCC-CSM2-MR | BBC,中国 | 1.13°×1.12° |
CanESM5 | CCCma,加拿大 | 2.81°×2.79° |
EC-Earth3 | EC-Earth-Cons,欧盟 | 0.7°×0.7° |
EC-Earth3-Veg | EC-Earth-Cons,欧盟 | 0.7°×0.7° |
FGOALS-g3 | FGOALS,中国 | 2°×2.03° |
GFDL-CM4 | NOAA-GFDL,美国 | 1.25°×1° |
GFDL-ESM4 | NOAA-GFDL,美国 | 1.25°×1° |
IPSL-CM6A-LR | IPSL,法国 | 2.5°×1.27° |
INM-CM4-8 | INM,俄罗斯 | 2°×1.5° |
INM-CM5-0 | INM,俄罗斯 | 2°×1.5° |
MPI-ESM1-2-LR | MPI-M,德国 | 1.88°×1.87° |
NESM3 | NUIST,中国 | 1.88°×1.87° |
NorESM2-LM | NCC,挪威 | 2.5°×1.89° |
[1] |
Easterling D R, Evans J L, Groisman P Y, et al. Observed variability and trends in extreme climate events: A brief review[J]. Bulletin of the American Meteorological Society, 2000, 81(3):417-426.
doi: 10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2 |
[2] | 任国玉, 封国林, 严中伟. 中国极端气候变化观测研究回顾与展望[J]. 气候与环境研究, 2010, 15(4):337-353. |
[ Ren Guoyu, Feng Guolin, Yan Zhongwei. Progresses in observation studies of climate extremes and changes in mainland China[J]. Climatic and Environmental Research, 2010, 15(4):337-353. ] | |
[3] |
Li S, Wei F, Wang Z, et al. Spatial heterogeneity and complexity of the impact of extreme climate on vegetation in China[J]. Sustainability, 2021, 13(10):5748.
doi: 10.3390/su13105748 |
[4] |
Zhu X, Troy T J. Agriculturally relevant climate extremes and their trends in the world’s major growing regions[J]. Earth’s Future, 2018, 6(4):656-672.
doi: 10.1002/eft2.v6.4 |
[5] |
Robine J M, Cheung S L K, Roy S L, et al. Death toll exceeded 70000 in Europe during the summer of 2003[J]. Comptes Rendus Biologies, 2008, 331(2):171-178.
doi: 10.1016/j.crvi.2007.12.001 |
[6] |
Barriopedro D, Fischer E M, Luterbacher J, et al. The hot summer of 2010: Redrawing the temperature record map of Europe[J]. Science, 2011, 332(6026):220-224.
doi: 10.1126/science.1201224 pmid: 21415316 |
[7] |
Sun Y, Zhang X, Zwiers F W, et al. Rapid increase in the risk of extreme summer heat in Eastern China[J]. Nature Climate Change, 2014, 4(12):1082-1085.
doi: 10.1038/nclimate2410 |
[8] | 张宇, 张良, 王素萍, 等. 2017年夏季全国干旱状况及其影响与成因[J]. 干旱气象, 2017, 35(5):899-905. |
[ Zhang Yu, Zhang Liang, Wang Suping, et al. Drought events and its influence in summer of 2017 in China[J]. Journal of Arid Meteorology, 2017, 35(5):899-905. ] | |
[9] |
Stott P A, Christidis N, Otto F, et al. Attribution of extreme weather and climate-related events[J]. Wiley Interdisciplinary Reviews Climate Change, 2016, 7(1):23-41.
doi: 10.1002/wcc.2016.7.issue-1 |
[10] |
Seneviratne S I, Donat M G, Mueller B, et al. No pause in the increase of hot temperature extremes[J]. Nature Climate Change, 2014, 4(3):161-163.
doi: 10.1038/nclimate2145 |
[11] |
Founda D, Papadopoulos K H, Petrakis M, et al. Analysis of mean, maximum and minimum temperature in Athens from 1897-2001 with emphasis on the last decade: Trends, warm events, and cold events[J]. Global and Planetary Change, 2004, 44(1-4):27-38.
doi: 10.1016/j.gloplacha.2004.06.003 |
[12] |
Founda D. Evolution of the air temperature in Athens and evidence of climatic change: A review[J]. Advances in Building Energy Research, 2011, 5(1):7-41.
doi: 10.1080/17512549.2011.582338 |
[13] |
Scherrer S C, Fischer E M, Posselt R, et al. Emerging trends in heavy precipitation and hot temperature extremes in Switzerland[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(6):2626-2637.
doi: 10.1002/2015JD024634 |
[14] |
Founda D, Varotsos K V, Pierros F, et al. Observed and projected shifts in hot extremes’ season in the Eastern Mediterranean[J]. Global and Planetary Change, 2019, 175:190-200.
doi: 10.1016/j.gloplacha.2019.02.012 |
[15] | Founda D, Pierros F, Petrakis M, et al. Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves[J]. Atmospheric Research, 2015, 161:1-13. |
[16] | 任国玉, 徐铭志, 初子莹, 等. 近54 a中国地面气温变化[J]. 气候与环境研究, 2005, 10(4):717-727. |
[ Ren Guoyu, Xu Mingzhi, Chu Ziying, et al. Changes of surface air temperature in China during 1951-2004[J]. Climatic and Environmental Research, 2005, 10(4):717-727. ] | |
[17] | 潘晓华. 近五十年中国极端温度和降水事件变化规律的研究[D]. 北京: 中国气象科学研究院, 2002. |
[ Pan Xiaohua. Changes in Extreme Temperature Events in China during Recent 50 years[D]. Beijing: Chinese Academy of Meteorological Sciences, 2002. ] | |
[18] | 齐月, 陈海燕, 房世波, 等. 1961—2010年西北地区极端气候事件变化特征[J]. 干旱气象, 2015, 33(6):963-969. |
[ Qi Yue, Chen Haiyan, Fang Shibo, et al. Variation characteristics of extreme climate events in Northwest China during 1961-2010[J]. Journal of Arid Meteorology, 2015, 33(6):963-969. ] | |
[19] |
Pezza A B, Rensch P V, Cai W. Severe heat waves in Southern Australia: Synoptic climatology and large scale connections[J]. Climate Dynamics, 2012, 38(1):209-224.
doi: 10.1007/s00382-011-1016-2 |
[20] |
Chen X, Zhou T. Relative contributions of external SST forcing and internal atmospheric variability to July-August heat waves over the Yangtze River valley[J]. Climate Dynamics, 2018, 51(11):4403-4419.
doi: 10.1007/s00382-017-3871-y |
[21] | 陈海山, 周晶. 土壤湿度年际变化对中国区域极端气候事件模拟的影响研究Ⅱ.敏感性试验分析[J]. 大气科学, 2013, 37(1):1-13. |
[ Chen Haishan, Zhou Jing. Impact of interannual soil moisture anomaly on simulation of extreme climate events in China. Part II: Sensitivity experiment analysis[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(1):1-13. ] | |
[22] |
Della-Marta P M, Luterbacher J, Weissenfluh H V, et al. Summer heat waves over Western Europe 1880-2003, their relationship to large-scale forcings and predictability[J]. Climate Dynamics, 2007, 29(2):251-275.
doi: 10.1007/s00382-007-0233-1 |
[23] |
Wu Z, Lin H, Li J, et al. Heat wave frequency variability over North America: Two distinct leading modes[J]. Journal of Geophysical Research: Atmospheres, 2012, 117:D02102. doi: 10.1029/2011JD016908.
doi: 10.1029/2011JD016908 |
[24] | 李艳, 马百胜, 杨宣, 等. 中国大陆夏季高温热浪事件的特征及两类El Niño事件对其影响[J]. 兰州大学学报(自然科学版), 2018, 54(6):711-720. |
[ Li Yan, Ma Baisheng, Yang Xuan, et al. Characteristics of summer heat waves in China Mainland and the relationship between Eastern-/Central-Pacific El Niño and heat wave events[J]. Journal of Lanzhou University (Natural Sciences), 2018, 54(6):711-720. ] | |
[25] |
Freychet N, Tett S, Wang J, et al. Summer heat waves over Eastern China: Dynamical processes and trend attribution[J]. Environmental Research Letters, 2017, 12(2):024015.
doi: 10.1088/1748-9326/aa5ba3 |
[26] | 张杰. 新疆区域气候变化评估报告决策者摘要及执行摘要[M]. 北京: 气象出版社, 2013. |
[ Zhang Jie. Xinjiang Regional Climate Change Assessment Report Summary for Policymakers and Executive Summary[M]. Beijing: China Meteorological Press, 2013. ] | |
[27] | 毛炜峄, 陈鹏翔, 沈永平. 气候变暖背景下2015年夏季新疆极端高温过程及其影响[J]. 冰川冻土, 2016, 38(2):291-304. |
[ Mao Weiyi, Chen Pengxiang, Shen Yongping. Characteristics and effects of the extreme maximum air temperature in the summer of 2015 in Xinjiang under global warming[J]. Journal of Glaciology and Geocryology, 2016, 38(2):291-304. ] | |
[28] | 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5):519-525. |
[ Zhang Lixia, Chen Xiaolong, Xin Xiaoge. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP)[J]. Climate Change Research, 2019, 15(5):519-525. ] | |
[29] | 殷田园, 殷淑燕, 李富民. 秦岭南北区域夏季极端降水与西太平洋副热带高压的关系[J]. 干旱区研究, 2019, 36(6):1379-1390. |
[ Yin Tianyuan, Yin Shuyan, Li Fumin. Relationship between the summer extreme precipitation in the south and north of the Qinling Mountains and the Western Pacific Subtropical High[J]. Arid Zone Research, 2019, 36(6):1379-1390. ] | |
[30] | 李娇, 任国玉, 战云健. 浅谈极端气温事件研究中阈值确定方法[J]. 气象科技进展, 2013, 3(5):36-40. |
[ Li Jiao, Ren Guoyu, Zhan Yunjian. Discussion on threshold determination in defining extreme temperature indices[J]. Advances in Meteorological Science and Technology, 2013, 3(5):36-40. ] | |
[31] |
Hobday A J, Alexander L V, Perkins S E, et al. A hierarchical approach to defining marine heatwaves[J]. Progress in Oceanography, 2016, 141(14):227-238.
doi: 10.1016/j.pocean.2015.12.014 |
[32] | 丁一汇. “暖冬”渐行渐远全球变暖暂时停滞了吗?[J]. 今日科苑, 2011, 15(24):19-22. |
[ Ding Yihui. The warm winter is fading away is global warming temporarily stagnant?[J] Modern Science, 2011, 15(24):19-22. ] | |
[33] | 孔锋. 1961—2018年中国极端冷暖事件变化及其空间差异特征[J]. 水利水电技术, 2020, 51(9):34-44. |
[ Kong Feng. The change of extreme cold and warm events in China from 1961 to 2018 and their spatial differences[J]. Water Resources and Hydropower Engineering, 2020, 51(9):34-44. ] | |
[34] | 邵勰, 廖要明, 柳艳菊, 等. 2015年全球重大天气气候事件及其成因[J]. 气象, 2016, 42(4):489-495. |
[ Shao Xie, Liao Yaoming, Liu Yanju, et al. Global major weather and climate events in 2015 and possible cause[J]. Meteorological Monthly, 2016, 42(4):489-495. ] | |
[35] | 陈颖, 邵伟玲, 曹萌, 等. 新疆夏季高温日数的变化特征及其影响因子[J]. 干旱区研究, 2020, 37(1):58-66. |
[ Chen Ying, Shao Weiling, Cao Meng, et al. Variation of summer high temperature days and its affecting factors in Xinjiang[J]. Arid Zone Research, 2020, 37(1):58-66. ] | |
[36] | 孙颖, 丁一汇. IPCC AR4气候模式对东亚夏季风年代际变化的模拟性能评估[J]. 气象学报, 2008, 66(5):765-780. |
[ Sun Ying, Ding Yihui. Validation of IPCC AR4 climate models in simulating interdecadal change of East Asian summer monsoon[J]. Acta Meteorologica Sinica, 2008, 66(5):765-780. ] | |
[37] | 张明. 基于多指标、多尺度的中国极端高温事件时空分析[D]. 上海: 上海师范大学, 2016. |
[ Zhang Ming. A Multi-scale Spatiotemporal Analysis of Extreme High Temperature Events in China Based on Multiple Indices[D]. Shanghai: Shanghai Normal University, 2016. ] | |
[38] |
Robinson S A, Klekociuk A R, King D H, et al. The 2019/2020 summer of Antarctic heatwaves[J]. Global Chang Biology, 2020, 26(6):3178-3180.
doi: 10.1111/gcb.v26.6 |
[39] |
Dobricic S, Russo S, Pozzoli L, et al. Increasing occurrence of heat waves in the terrestrial Arctic[J]. Environmental Research Letters, 2020, 15(2):024022.
doi: 10.1088/1748-9326/ab6398 |
[40] |
Guo X, Huang J, Luo Y, et al. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models[J]. Theoretical and Applied Climatology, 2017, 128(3-4):507-522.
doi: 10.1007/s00704-015-1718-1 |
[41] | 王冀, 江志红, 丁裕国, 等. 21世纪中国极端气温指数变化情况预估[J]. 资源科学, 2008, 30(7):1084-1092. |
[ Wang Ji, Jiang Zhihong, Ding Yuguo, et al. Multi-model ensemble prediction of extreme temperature indices in China[J]. Resources Science, 2008, 30(7):1084-1092. ] |
[1] | SUN Linlin, LIU Qiong, HUANG Guan, CHEN Yonghang, WEI Xin, GUO Yulin, ZHANG Taixi, GAO Tianyi, XU Yunhong. Analysis of surface solar radiation under different cloud conditions in Xinjiang and the surrounding “Belt and Road” regions [J]. Arid Zone Research, 2024, 41(9): 1480-1490. |
[2] | JIAN Zhengbo, LUO Hao, SHAN Nana. A study on the spatial and temporal evolution and carbon effects of production-living-ecological in Xinjiang under carbon peak and carbon neutrality goals [J]. Arid Zone Research, 2024, 41(7): 1238-1248. |
[3] | LIU Huaqing, WANG Bo, JIA Yanyan, XIE Xinran, ZHANG Wei. Characterization of the freezing injury to Juglans regia at different slope positions in the West Tianshan valley of Xinjiang, China [J]. Arid Zone Research, 2024, 41(6): 1079-1088. |
[4] | MA Yuanzhi, QIN Xiaolin, LING Hongbo, YAN Junjie, ZHANG Guangpeng. Spatio-temporal characteristics and trends of area changes in the small and medium-sized lakes in Xinjiang, China, from 1991 to 2020 [J]. Arid Zone Research, 2024, 41(6): 905-916. |
[5] | ZHANG Haozhe, XUE Yayong, MA Yuanyuan, XUE Guoxuan. Carbon sequestration potential of oasis ecosystem in Xinjiang, China [J]. Arid Zone Research, 2024, 41(6): 998-1009. |
[6] | XU Chaojie, DOU Yan, MENG Qilin. Prediction of the standardized precipitation evapotranspiration index in the Xinjiang region using the EMD-GWO-LSTM model [J]. Arid Zone Research, 2024, 41(4): 527-539. |
[7] | SI Qi, FAN Haoran, DONG Wenming, LIU Xinping. Landscape ecological risk assessment and prediction for the Yarkant River Basin, Xinjiang, China [J]. Arid Zone Research, 2024, 41(4): 684-696. |
[8] | BAO Jiayu, LI Xianglong, HU Qiwen, LI Tao. Spatiotemporal characteristics of carbon emissions from energy consumption and the approach to energy structure adjustment in Xinjiang [J]. Arid Zone Research, 2024, 41(3): 490-498. |
[9] | YAO Junqiang. Change in atmospheric and surface water resource in Xinjiang [J]. Arid Zone Research, 2024, 41(2): 181-190. |
[10] | WU Mingjiang, QIU Juan, ZHENG Feng, LING Xiaobo, WANG Xinyu, YANG Yang, YANG Jiaxin, LIU Liqiang. Study on shrub species diversity and niche of wild fruit forest in Xinjiang [J]. Arid Zone Research, 2024, 41(12): 2094-2109. |
[11] | XU Yunhong, LIU Qiong, CHEN Yonghang, WEI Xin, LIU Xin, ZHANG Taixi, SHAO Weiling, YANG Hequn, ZHANG Chengming. Impact of land cover variations on surface albedo in Xinjiang and its surrounding Central Asian region [J]. Arid Zone Research, 2024, 41(10): 1649-1661. |
[12] | JIN Chenyang, DU Hongru. Characteristics of spatial and temporal changes and zoning of cultivated land resilience in Xinjiang [J]. Arid Zone Research, 2024, 41(10): 1778-1788. |
[13] | LI Xiaofeng, HUI Tingting, LI Yaoming, MAO Jiefei, WANG Guangyu, FAN Lianlian. Effects of different grazing management strategies on plant diversity in the mountain grassland of Xinjiang, China [J]. Arid Zone Research, 2024, 41(1): 124-134. |
[14] | WANG Xiang, LYU Haishen, ZHU Yonghua, GUO Chenyu. Application and comparison of two channel flood routing methods in Xinjiang mountainous areas [J]. Arid Zone Research, 2023, 40(8): 1240-1247. |
[15] | WANG Chao, MA Zhancang, PAN Chengnan, WU Xingyue, SONG Wendan, YAN Ping. New records of Amaranthus in Xinjiang [J]. Arid Zone Research, 2023, 40(8): 1280-1288. |
|