Arid Zone Research ›› 2024, Vol. 41 ›› Issue (10): 1708-1718.doi: 10.13866/j.azr.2024.10.09
• Land and Water Resources • Previous Articles Next Articles
LIANG Yuanye1,2,3(), FAN Lianlian1,2,3, MA Xuexi1,2,3, MAO Jiefei1,2,3, HUI Tingting1,2,3, LI Yaoming1,2,3()
Received:
2024-03-06
Revised:
2024-05-14
Online:
2024-10-15
Published:
2024-10-14
Contact:
LI Yaoming
E-mail:liangyuanye20@mails.ucas.ac.cn;lym@ms.xjb.ac.cn
LIANG Yuanye, FAN Lianlian, MA Xuexi, MAO Jiefei, HUI Tingting, LI Yaoming. Ecological stoichiometry of soil carbon, nitrogen, and phosphorus in six grassland types in northern Xinjiang[J].Arid Zone Research, 2024, 41(10): 1708-1718.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Soil and vegetation profiles of six grassland types in the Irtysh River Basin, Xinjiang"
高寒草甸 | 山地草甸 | 温性草甸草原 | 温性草原 | 温性荒漠草原 | 温性荒漠 | |
---|---|---|---|---|---|---|
土壤pH | 5.05±0.14d | 6.12±0.18c | 7.05±0.08b | 7.18±0.10b | 8.47±0.45a | 8.64±0.19a |
土壤容重/(g·cm-3) | 1.05±0.04d | 1.08±0.03d | 1.26±0.06c | 1.45±0.04b | 1.62±0.04a | 1.56±0.04a |
土壤体积含水量/% | 14.70±2.92a | 8.77±0.98b | 4.89±0.47c | 3.90±0.45c | 2.28±0.63c | 2.51±0.41c |
砂粒含量/% | 30.75±6.58d | 37.97±3.89d | 44.26±4.02c | 55.22±6.40b | 75.54±6.99a | 78.80±4.32a |
粉粒含量/% | 58.69±2.88a | 54.03±3.31ab | 48.21±3.42b | 37.71±5.36c | 20.45±5.87d | 16.85±3.60d |
黏粒含量/% | 10.56±0.87a | 8.00±0.69b | 7.53±0.64b | 7.07±1.09b | 4.01±1.16c | 4.03±0.74c |
地上生物量/(g·m-2) | 50.79±4.07b | 153.24±30.52a | 46.27±12.82b | 36.24±7.66bc | 27.91±9.36c | 27.51±6.52c |
植被盖度/% | 83.91±4.19a | 84.58±4.00a | 58.71±8.80b | 46.53±3.28c | 26.30±8.76d | 27.51±5.17d |
土壤质地 | 粉质壤土 | 粉质壤土 | 壤土 | 砂质壤土 | 砂土 | 砂土 |
土壤类型 | 黑钙土 | 黑钙土 | 栗钙土 | 栗钙土 | 栗钙土 | 栗钙土 |
Tab. 2
Correlation analysis of soil carbon, nitrogen and phosphorus concentration and their ecological stoichiometry with soil physical and chemical properties, and vegetation factors"
土壤有机碳/(g·kg-1) | 土壤总氮/(g·kg-1) | 土壤总磷/(g·kg-1) | 土壤碳氮比 | 土壤碳磷比 | 土壤氮磷比 | |
---|---|---|---|---|---|---|
土壤pH | -0.765*** | -0.788*** | -0.768*** | -0.190 | -0.571*** | -0.495*** |
土壤容重/(g·cm-3) | -0.878*** | -0.861*** | -0.657*** | -0.403*** | -0.764*** | -0.625*** |
土壤体积含水量/% | 0.686*** | 0.684*** | 0.606*** | 0.231 | 0.478*** | 0.397** |
砂粒含量/% | -0.789*** | -0.797*** | -0.606*** | -0.226 | -0.721*** | -0.645*** |
粉粒含量/% | 0.805*** | 0.813*** | 0.619*** | 0.228 | 0.737*** | 0.661*** |
黏粒含量/% | 0.632*** | 0.633*** | 0.478*** | 0.193 | 0.568*** | 0.502*** |
地上生物量/(g·m-2) | 0.527*** | 0.555*** | 0.385** | 0.111 | 0.460*** | 0.450*** |
植被盖度/% | 0.832*** | 0.846*** | 0.665*** | 0.277* | 0.704*** | 0.615*** |
[1] | 庞金凤, 张波, 王波, 等. 昆仑山中段北坡不同海拔梯度下土壤生态化学计量学特征[J]. 干旱区资源与环境, 2020, 34(1): 178-185. |
[Pang Jinfeng, Zhang Bo, Wang Bo, et al. Characteristics of soil ecological stoichiometry under different elevation on the north slope of Kunlun Mountains[J]. Journal of Arid Land Resources and Environment, 2020, 34(1): 178-185.] | |
[2] | Kumar A, Kumar M, Pandey R, et al. Forest soil nutrient stocks along altitudinal range of Uttarakhand Himalayas: An aid to Nature Based Climate Solutions[J]. Catena, 2021, 207: 105667. |
[3] | 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. |
[Wang Shaoqiang, Yu Guirui. Ecological stoichiometry characteristics of ecosystem carbon,nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947.] | |
[4] |
高海宁, 李彩霞, 孙小妹, 等. 祁连山北麓不同海拔土壤化学计量特征[J]. 中国沙漠, 2021, 41(1): 219-227.
doi: 10.7522/j.issn.1000-694X.2020.00125 |
[Gao Haining, Li Caixia, Sun Xiaomei, et al. Stoichiometry characteristics of soil at different altitudes in the Qilian Mountains[J]. Journal of Desert Research, 2021, 41(1): 219-227.]
doi: 10.7522/j.issn.1000-694X.2020.00125 |
|
[5] | Tian L M, Zhao L, Wu X D, et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland[J]. Science of the Total Environment, 2018, 622: 192-202. |
[6] | Huang L, Hu H, Bao W K, et al. Shifting soil nutrient stoichiometry with soil of variable rock fragment contents and different vegetation types[J]. Catena, 2023, 220: 106717. |
[7] | Xu H W, Qu Q, Li G W, et al. Impact of nitrogen addition on plant-soil-enzyme C-N-P stoichiometry and microbial nutrient limitation[J]. Soil Biology & Biochemistry, 2022, 174: 108834. |
[8] | Chen L L, Wang K X, Baoyin T. Effects of grazing and mowing on vertical distribution of soil nutrients and their stoichiometry (C:N:P) in a semi-arid grassland of North China[J]. Catena, 2021, 206: 105507. |
[9] | Ren C J, Zhao F Z, Kang D, et al. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland[J]. Forest Ecology & Management, 2016, 376: 59-66. |
[10] | 李新星, 刘桂民, 吴小丽, 等. 马衔山不同海拔土壤碳、氮、磷含量及生态化学计量特征[J]. 生态学杂志, 2020, 39(3): 758-765. |
[Li Xinxing, Liu Guimin, Wu Xiaoli, et al. Elevational distribution of soil organic carbon,nitrogen and phosphorus contents and their ecological stoichiometry on Maxian Mountain[J]. Chinese Journal of Ecology, 2020, 39(3): 758-765.] | |
[11] |
Bi X, Li B, Nan B, et al. Characteristics of soil organic carbon and total nitrogen under various grassland types along a transect in a mountain-basin system in Xinjiang, China[J]. Journal of Arid Land, 2018, 10(4): 612-627.
doi: 10.1007/s40333-018-0006-1 |
[12] |
郁国梁, 马紫荆, 吕自立, 等. 海拔和植物群落共同调节天山中段南坡巴伦台地区天然草场土壤化学计量特征[J]. 草业学报, 2023, 32(9): 68-78.
doi: 10.11686/cyxb2022412 |
[Yu Guoliang, Ma Zijin, Lv Zili, et al. Altitude and plant community jointly regulate soil stoichiometry characteristics of natural grassland in the Baluntai area on the southern slope of the middle Tianshan Mountains, China[J]. Acta Prataculturae Sinica, 2023, 32(9): 68-78.]
doi: 10.11686/cyxb2022412 |
|
[13] | 张一帆, 武海涛, 刘吉平, 等. 长白山地土壤碳、氮、磷含量及生态化学计量垂直特征[J]. 环境生态学, 2023, 5(1): 7-15, 81. |
[Zhang Yifan, Wu Haitao, Liu Jiping, et al. Vertical characteristics of soil carbon, nitrogen and phosphorus contents and ecological stoichiometry in the Changbai Mountains[J]. Environmental Ecology, 2023, 5(1): 7-15, 81.] | |
[14] | Hu B F, Xie M D, Li H Y, et al. Stoichiometry of soil carbon, nitrogen, and phosphorus in farmland soils in southern China: Spatial pattern and related dominates[J]. Catena, 2022, 217: 106468. |
[15] | Xu Z W, Yu G R, Zhang X Y, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[J]. Soil Biology & Biochemistry, 2017, 104: 152-163. |
[16] | 李婷, 邓强, 袁志友, 等. 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征[J]. 环境科学, 2015, 36(8): 2988-2996. |
[Li Ting, Deng Qiang, Yuan Zhiyou, et al. Latitudinal changes in plant stoichiometric and soil C, N, P stoichiometry in Loess Plateau[J]. Environmental Science, 2015, 36(8): 2988-2996.] | |
[17] | Zhang X R, Zhang W Q, Sai X, et al. Grazing altered soil aggregates, nutrients and enzyme activities in a Stipa kirschnii steppe of Inner Mongolia[J]. Soil & Tillage Research, 2022, 219: 105327. |
[18] | 张新时. 天山北部山地-绿洲-过渡带-荒漠系统的生态建设与可持续农业范式[J]. 植物学报, 2001, 43(12): 1294-1299. |
[Zhang Xinshi. Ecological restoration and sustainable agricultural paradigm of mountain-oasis-ecotone-desert system in the north of the Tianshan Mountains[J]. Acta Botanica Sinica, 2001, 43(12): 1294-1299.] | |
[19] | 阿斯太肯·居力海提, 董乙强, 李靖, 等. 禁牧对不同气候区蒿类荒漠植被和土壤养分及化学计量特征的影响[J]. 干旱区资源与环境, 2021, 35(11): 157-164. |
[Asitaiken Julihaiti, Dong Yiqiang, Li Jing, et al. Effects of grazing exclusion on nutrition and stoichiometry characteristics of Artemisia desert vegetation and soil[J]. Journal of Arid Land Resources and Environment, 2021, 35(11): 157-164.] | |
[20] | 杨琳. 新疆阿勒泰地区天然草地毒害草种群分布与危害及防控调查[D]. 杨凌: 西北农林科技大学, 2019. |
[Yang Ling. Investigation on Population Distribution,Harm and Control of Poisonous Grass on Natural Grassland in Altay Region of Xinjiang[D]. Yangling: Northwest Agriculture & Forestry University, 2019.] | |
[21] | 何海龙, 齐雁冰, 吕家珑, 等. 中国土壤质地分类系统的发展与建议修订方案[J]. 农业资源与环境学报, 2023, 40(3), 501-510. |
[He Hailong, Qi Yanbing, Lv Jialong, et al. Development and revision of the Chinese soil texture classification system[J]. Journal of Agricultural Resources and Environment, 2023, 40(3): 501-510.] | |
[22] | Wrb I W G. World Reference Base for Soil Resources 2014, update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps[M]. World Soil Resources Reports No. 106. FAO, Rome, 2015. |
[23] |
李娅丽, 柳小妮, 张德罡, 等. 陇中温性草原不同草地型植被特征和土壤理化性质研究[J]. 草地学报, 2023, 31(11): 3405-3414.
doi: 10.11733/j.issn.1007-0435.2023.11.019 |
[Li Yali, Liu Xiaoni, Zhang Degang, et al. Vegetation characteristics and soil physicochemical properties of different grassland types of temperate steppe in Longzhou[J]. Acta Agrestia Sinica, 2023, 31(11): 3405-3414.]
doi: 10.11733/j.issn.1007-0435.2023.11.019 |
|
[24] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005. |
[Bao Shidan. Agrochemical Analysis of Soil[M]. Beijing: China Agriculture Press, 2005.] | |
[25] | Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1-3): 139-151. |
[26] | Lu J N, Feng S, Wang S K, et al. Patterns and driving mechanism of soil organic carbon, nitrogen, and phosphorus stoichiometry across northern China’s desert-grassland transition zone[J]. Catena, 2023, 220: 106695. |
[27] |
Zhang K, Su Y Z, Yang R. Variation of soil organic carbon, nitrogen, and phosphorus stoichiometry and biogeographic factors across the desert ecosystem of Hexi Corridor, northwestern China[J]. Journal of Soils and Sediments, 2019, 19(1): 49-57.
doi: 10.1007/s11368-018-2007-2 |
[28] | Chai H, Yu G R, He N P, et al. Vertical distribution of soil carbon, nitrogen, and phosphorus in typical Chinese terrestrial ecosystems[J]. Chinese Geographical Science, 2015, 25(5): 549-560. |
[29] |
李敏, 孙杰, 陈雪, 等. 荒漠植物叶片-土壤化学计量及植物内稳态特征[J]. 干旱区研究, 2024, 41(1): 104-113.
doi: 10.13866/j.azr.2024.01.10 |
[Li Min, Sun Jie, Chen Xue, et al. Leaf-soil stoichiometry and homeostasis characteristics of desert-related plants[J]. Arid Zone Research, 2024, 41(1): 104-113.]
doi: 10.13866/j.azr.2024.01.10 |
|
[30] |
陶冶, 吴甘霖, 刘耀斌, 等. 古尔班通古特沙漠典型灌木群落土壤化学计量特征及其影响因素[J]. 中国沙漠, 2017, 37(2): 305-314.
doi: 10.7522/j.issn.1000-694X.2016.00087 |
[Tao Ye, Wu Ganlin, Liu Yaobin, et al. Soil stoichiometry and their influencing factors in typical shrub communities in the Gurbantunggut Desert,China[J]. Journal of Desert Research, 2017, 37(2): 305-314.]
doi: 10.7522/j.issn.1000-694X.2016.00087 |
|
[31] | Heuck C, Weig A, Spohn M. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus[J]. Soil Biology & Biochemistry, 2015, 85: 119-129. |
[32] |
王健铭, 王文娟, 李景文, 等. 中国西北荒漠区植物物种丰富度分布格局及其环境解释[J]. 生物多样性, 2017, 25(11): 1192-1201.
doi: 10.17520/biods.2017149 |
[Wang Jianming, Wang Wenjuan, Li Jingwen, et al. Biogeographic patterns and environmental interpretation of plant species richness in desert regions of Northwest China[J]. Biodiversity Science, 2017, 25(11): 1192-1201.]
doi: 10.17520/biods.2017149 |
|
[33] | Luo Y, Peng Q W, Li K H, et al. Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China[J]. Catena, 2021, 199: 105100. |
[34] | Feyissa A, Raza S T, Cheng X. Soil carbon stabilization and potential stabilizing mechanisms along elevational gradients in alpine forest and grassland ecosystems of Southwest China[J]. Catena, 2023, 229: 107210. |
[35] |
王甜, 徐姗, 赵梦颖, 等. 内蒙古不同类型草原土壤团聚体含量的分配及其稳定性[J]. 植物生态学报, 2017, 41(11): 1168-1176.
doi: 10.17521/cjpe.2017.0220 |
[Wang Tian, Xu Shan, Zhao Mengying, et al. Allocation of mass and stability of soil aggregate in different types of Nei Mongol grasslands[J]. Chinese Journal of Plant Ecology, 2017, 41(11): 1168-1176.]
doi: 10.17521/cjpe.2017.0220 |
|
[36] | 刘爱琴, 严加亮, 侯晓龙, 等. 武夷山自然保护区不同海拔土壤磷素的分布规律[J]. 森林与环境学报, 2015, 35(4): 310-316. |
[Liu Aiqin, Yan Jialiang, Hou Xiaolong, et al. Heterogeneity distribution of soil phosphorus in Wuyishan Nature Reserve[J]. Journal of Forest & Environment, 2015, 35(4): 310-316.] | |
[37] | Cui Y X, Wang X, Zhang X C, et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region[J]. Soil Biology & Biochemistry, 2020, 147: 107814. |
[38] | Zhou Z H, Wang C K, Luo Y Q. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature Communications, 2020, 11(1): 3072. |
[39] | Du H Q, Li S, Webb N P, et al. Soil organic carbon (SOC) enrichment in aeolian sediments and SOC loss by dust emission in the desert steppe, China[J]. Science of the Total Environment, 2021, 798: 149189. |
[40] | Li Y Q, Ma J W, Xiao C, et al. Effects of climate factors and soil properties on soil nutrients and elemental stoichiometry across the Huang-Huai-Hai River Basin, China[J]. Journal of Soils and Sediments, 2020, 20(4): 1970-1982. |
[1] | XIE Gang, WANG Tiantian, YU Tao, DONG Jingwei, CHEN Shiqiang, WANG Mengxiao, ZHANG Shengjie, ZHANG Haoming. A preliminary study on the evolution of water temperature in the estuary of the Qinghai Lake [J]. Arid Zone Research, 2024, 41(9): 1503-1513. |
[2] | WANG Dai, LI Xin, ZHANG Wen, MA Yang, WANG Suyan, LI Jiayao. Synergistic effects of sea surface temperature and sea ice on the anomalous characteristics of precipitation distribution during the flood season in Ningxia [J]. Arid Zone Research, 2024, 41(8): 1288-1299. |
[3] | YANG Xiaoling, ZHOU Hua, CHEN Jing, ZHAO Huihua, WU Wen. Temperature in different climate states and their influence on climate evaluation in the Hexi Corridor Eastern [J]. Arid Zone Research, 2024, 41(7): 1089-1098. |
[4] | TANG Weichun, LIU Xiao’e, SU Shiping, TIAN Xiaojuan, TANG Qingtong, ZHANG Jing. Response of soil nitrogen mineralization to temperature along the different successional stages in Xinglong Mountain, Gansu Province, China [J]. Arid Zone Research, 2024, 41(6): 984-997. |
[5] | ZHAO Lichao, ZHANG Chengfu, HE Shuai, MIAO Lin, FENG Shuang, PAN Sihan. Simulation of land surface temperature in complex mountainous terrain and the influence of environmental factors: A case study in Daqingshan, Inner Mongolia [J]. Arid Zone Research, 2024, 41(5): 765-775. |
[6] | AN Ning, GUO Bin, ZHANG Dongmei, YANG Qiyue, LUO Weicheng. Desert vegetation composition and spatial distribution of soil nutrients in the middle section of Hexi Corridor [J]. Arid Zone Research, 2024, 41(3): 432-443. |
[7] | YANG Yaqing, ZHANG Chong, ZHANG Jie, WANG Yudan. Changes in soil moisture and dryness and their response to climate change in the Guanzhong region [J]. Arid Zone Research, 2024, 41(2): 261-271. |
[8] | ZHENG Yu, SUN Ying, ZHOU Jinlong, LI Ruyue. Hydrochemical properties and genetic mechanisms of high-fluoride groundwater in the Irtysh River Basin Plain, Xinjiang [J]. Arid Zone Research, 2024, 41(12): 2056-2070. |
[9] | ZHANG Jiudan, ZHANG Aiguo, JIN Jingyu, LIU Shuaiqi, WU Han, LI Junli. Physicochemical characteristics and quality assessment of Gobi soils, Hami City, China [J]. Arid Zone Research, 2024, 41(11): 1864-1874. |
[10] | YANG Fei, ZHANG Wentao, ZHANG Feimin, WANG Chenghai. Climate characteristics and variation in the Qilian Mountains from 1961 to 2022 [J]. Arid Zone Research, 2024, 41(10): 1627-1638. |
[11] | LI Yongguang, YUAN Guanghui. Biophysical effects of the different underlying factors on land the surface temperature in the Qinghai Lake Basin [J]. Arid Zone Research, 2024, 41(1): 24-35. |
[12] | ZHANG Xiaomin, ZHANG Dongmei, ZHANG Wei. Effects of human activities on carbon storage in the Irtysh River Basin [J]. Arid Zone Research, 2023, 40(8): 1333-1345. |
[13] | WANG Jixin, LI Qian, LI Han, ZHANG Junxia, LIU Xinyu. Application of WQSRTP method in objective forecast of high and low temperature in Gansu Province [J]. Arid Zone Research, 2023, 40(7): 1052-1064. |
[14] | WANG Shiwei, SUN Dongyuan, ZHOU Min, WANG Yike, WANG Xiangbin, JI Zonghu, ZHANG Wenrui, WU Lanzhen. Temporal and spatial variation of temperature in the Shule River Basin from 1951 to 2020 [J]. Arid Zone Research, 2023, 40(7): 1065-1074. |
[15] | ZHANG Hongli, HAN Fuqiang, ZHANG Liang, WANG Lixia, SUN Yuan, LI Fumin. Analysis of spatial and seasonal variations in climate warming and humidification in Northwest China [J]. Arid Zone Research, 2023, 40(4): 517-531. |
|