Arid Zone Research ›› 2024, Vol. 41 ›› Issue (1): 60-70.doi: 10.13866/j.azr.2024.01.06

• Land and Water Resources • Previous Articles     Next Articles

Effects of micro-topography on water use characteristics of alpine sand-fixing plants

FAN Mingyan1(),TIAN Lihui1(),ZHOU Hai2   

  1. 1. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
    2. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
  • Received:2023-07-11 Revised:2023-09-13 Online:2024-01-15 Published:2024-01-24

Abstract:

Water is the most critical limiting factor for plant survival, and the study of water utilization in desert plants has become the key to ecological protection and vegetation restoration programs. This study focused on three typical sand-fixing plants: Pinus sylvestris, Populus simonii, and Hippophae rhamnoides, in the sandy land on the east shore of Qinghai Lake, as the research material. The potential water source (varying levels of soil water) and the primary water sources for plants under the influence of micro-topography were analyzed by hydrogen and oxygen stable isotope technology (δ18O and δD) and the IsoSource isotope mixing model. The results show that: (1) the soil water content demonstrated micro-topography-based differences, which manifested as the soil water content on the windward slope being higher than that on the top of the sand dunes and the middle of the windward slope and the soil water content was at its highest in September. (2) the δ18O value of the xylem water varied in the tree species under different micro-topographic conditions. The δ18O values of P. sylvestris in the lowland of the windward slope were the lowest, while those of H. rhamnoides and P. simonii were the least in the middle of the windward slope. (3) marked seasonal variations were observed in the primary sources of water for different plants. In June, P. sylvestris and H. rhamnoides used deep soil water as the major source under varied micro-topographic conditions, while P. simonii mainly used deep soil water at the top of sand dunes. The soil water of the middle-layer was utilized more in the middle and lowlands of the windward slope. Still, with the increase of precipitation, various tree species turned to mainly using the shallow and middle soil water in September. In summary, the water use patterns of sand-fixing plants in the alpine sandy land were influenced by micro-topographic conditions, and varying species showed different degrees of response to precipitation.

Key words: alpine sandy land, stable isotope, micro-topography, plant water source, IsoSource model