Arid Zone Research ›› 2025, Vol. 42 ›› Issue (2): 258-273.doi: 10.13866/j.azr.2025.02.07
• Land and Water Resources • Previous Articles Next Articles
LU Li1,2,3(), GE Yanyan3(
), LI Sheng3, ZHANG Yun3,4
Received:
2024-07-14
Revised:
2024-11-13
Online:
2025-02-15
Published:
2025-02-21
Contact:
GE Yanyan
E-mail:luli0401@sina.com;gyyxjdxgbc@163.com
LU Li, GE Yanyan, LI Sheng, ZHANG Yun. Hydrochemical characteristics and enrichment mechanisms of high-arsenic groundwater in the Aksu River Basin, Xinjiang[J].Arid Zone Research, 2025, 42(2): 258-273.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Statistical results of main hydrochemical indicators of groundwater samples in the study area"
地貌 | 含水层类型 (取样深度、 样品数) | 统计项 | pH /(mg·L-1) | TDS /(mg·L-1) | Na++K+ /(mg·L-1) | Ca2+ /(mg·L-1) | Mg2+ /(mg·L-1) | HCO3- /(mg·L-1) | SO42- /(mg·L-1) | Cl- /(mg·L-1) | As /(μg·L-1) | Eh /mV |
---|---|---|---|---|---|---|---|---|---|---|---|---|
山前倾 斜平原 | 单一结构潜水(1.7~130 m、 n=56) | 平均值 | 8.263 | 1281 | 286.045 | 97.743 | 60.585 | 214.497 | 353.723 | 377.099 | 5.61 | 293.47 |
中位数 | 8.3 | 544 | 73.69 | 68.71 | 38.74 | 202.62 | 177.1 | 77.42 | 0.77 | 179.33 | ||
最小值 | 7.47 | 248 | 21.44 | 30.32 | 16.42 | 79.33 | 69.04 | 18.86 | 0.05 | 29.3 | ||
最大值 | 8.66 | 16500 | 5565.08 | 404.9 | 262.45 | 707.83 | 2646.18 | 7593.39 | 160 | 652.61 | ||
变异系数 | 0.034 | 1.918 | 2.94 | 0.742 | 0.936 | 0.549 | 1.355 | 3.104 | 4.99 | 1.85 | ||
冲洪积细 土平原 | 承压水区潜水(1.3~45 m、 n=102) | 平均值 | 7.963 | 5689.608 | 1405.641 | 301.561 | 244.214 | 265.408 | 1967.937 | 1967.937 | 8.99 | 143.78 |
中位数 | 8.04 | 2746 | 491.43 | 183.59 | 150.27 | 260.54 | 1050.18 | 575.71 | 2.33 | 151.77 | ||
最小值 | 6.59 | 468 | 45.05 | 44.77 | 26.75 | 21.36 | 40.7 | 40.7 | 0.1 | -136.07 | ||
最大值 | 8.88 | 59336 | 17520.75 | 1702.59 | 1989.4 | 756.65 | 30095.63 | 30095.63 | 151.08 | 383.07 | ||
变异系数 | 0.055 | 1.55 | 1.866 | 0.911 | 1.26 | 0.535 | 2.054 | 2.054 | 2.15 | 1.49 | ||
承压水 (8~90 m、 n=37) | 平均值 | 8.394 | 645.297 | 123.799 | 56.376 | 32.251 | 112.475 | 204.691 | 154.013 | 12.37 | -28.71 | |
中位数 | 8.41 | 500 | 85.28 | 43.86 | 25.6 | 97.53 | 173.95 | 100.25 | 7.1 | 24.21 | ||
最小值 | 7.75 | 200 | 29.04 | 16.49 | 4.9 | 36.61 | 40.63 | 23.82 | 0.8 | -189.13 | ||
最大值 | 8.76 | 1920 | 512.36 | 201.42 | 121.97 | 341.71 | 771.88 | 810.95 | 75.39 | 133.87 | ||
变异系数 | 0.03 | 0.649 | 0.801 | 0.727 | 0.768 | 0.531 | 0.673 | 1.103 | 1.22 | 1.04 |
Tab. 3
Statistical results of high-arsenic groundwater in different administrative regions of the Aksu River Basin"
含水层类型 | 行政区 | 样品数量/组 | 高砷地下水类型 | |||
---|---|---|---|---|---|---|
<5 μg·L-1 | 5 μg·L-1<As<10 μg·L-1 | As>10 μg·L-1 | 均值/(μg·L-1) | |||
潜水 | 阿拉尔市 | 13 | 2 | 4 | 13.94 | SO4·Cl-Na·Ca |
阿瓦提县 | 34 | 7 | 8 | 7.97 | Cl·SO4-Na/SO4·Cl-Na | |
阿克苏市 | 31 | 3 | 3 | 2.98 | SO4·Cl-Na·Mg/SO4·Cl-Na·Ca·Mg | |
温宿县 | 37 | 5 | 8 | 9.29 | Cl-Na·Ca/Cl·SO-Na | |
乌什县 | 3 | 0 | 0 | 0.43 | - | |
合计 | 118 | 17 | 23 | - | - | |
承压水 | 阿拉尔市 | 1 | 0 | 2 | 40.16 | Cl·SO4-Na/SO4·Cl-Na |
阿瓦提县 | 1 | 2 | 4 | 11.41 | Cl·SO4-Na/SO4·Cl-Na·Mg | |
阿克苏市 | 5 | 6 | 5 | 8.95 | Cl·SO4-Na·Ca/SO4·Cl-Na·Ca | |
温宿县 | 5 | 2 | 4 | 10.39 | Cl·SO4-Na·Ca/SO4·HCO3-Na·Ca | |
合计 | 12 | 10 | 15 | - | - |
Tab. 4
Research area the main component factor contribution and load matrix of the groundwater"
指标 | 潜水 | 承压水 | |||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | ||
pH | -0.282 | 0.412 | -0.114 | -0.203 | -0.133 | 0.601 | |
TDS | 0.401 | 0.154 | -0.027 | 0.449 | 0.108 | 0.035 | |
Na++K+ | 0.392 | 0.184 | 0.005 | 0.362 | 0.326 | 0.132 | |
Ca2+ | 0.371 | -0.039 | -0.023 | 0.427 | 0.011 | -0.178 | |
Mg2+ | 0.380 | 0.083 | -0.156 | 0.329 | -0.415 | 0.065 | |
HCO3- | 0.147 | -0.550 | 0.245 | 0.121 | -0.557 | 0.038 | |
SO42- | 0.372 | 0.069 | -0.030 | 0.401 | -0.185 | 0.058 | |
Cl- | 0.388 | 0.187 | -0.033 | 0.370 | 0.336 | 0.036 | |
As | -0.070 | 0.328 | 0.478 | 0.061 | 0.171 | 0.698 | |
Eh | -0.011 | 0.453 | 0.310 | 0.055 | 0.047 | -0.279 | |
F- | 0.092 | -0.185 | 0.758 | -0.127 | 0.451 | -0.111 | |
特征值 | 5.885 | 1.490 | 1.107 | 4.713 | 2.505 | 1.193 | |
累计贡献率/% | 58.437 | 73.175 | 82.182 | 46.559 | 67.583 | 79.421 |
[1] |
Fendorf S, Michael H A, Van G A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia[J]. Science, 2010, 328(5982): 1123-1127.
doi: 10.1126/science.1172974 pmid: 20508123 |
[2] | Guo H, Zhang B, Li Y, et al. Hydrogeologica3 and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao Basin, Inner Mongolia[J]. Environmental Pollution, 2011, 159(4): 876-883. |
[3] | Wang Y, Li P, Dai X, et al. Abundance and diversity of methanogens: Potential role in high arsenic groundwater in Hetao Plain of Inner Mongolia, China[J]. Science of the Total Environment, 2015, 515: 153-161. |
[4] | Xie X, Wang Y, Ellis A, et al. Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: A case study in high arsenic aquifer systems of the Datong Basin, northern China[J]. Journal of Hydrology, 2013, 476(1):87-96. |
[5] | Pi K, Wang Y, Xie X, et al. Geochemical effects of dissolved organic matter biodegradation on arsenic transport in groundwater systems[J]. Journal of Geochemical Exploration, 2015, 149: 8-21. |
[6] | Basu A, Saha D, Saha R, et al. A review on sources, toxicity and remediation technologies for removing arsenic from drinking water[J]. Research on Chemical Intermediates, 2014, 40: 447-485. |
[7] | Hong Y, Song K, Chung J. Health effects of chronic arsenic exposure[J]. Journal of Preventive Medicine and Public Health, 2014, 47(5): 245-252. |
[8] | Berg M, Tran H C, Nguyen T C, et al. Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat[J]. Environmental Science & Technology, 2001, 35(13): 2621-2626. |
[9] | Guo H, Zhang B, Yang S, et al. Role of colloidal particles for hydrogeochemistry in As-affected aquifers of the Hetao Basin, Inner Mongolia[J]. Geochemical Journal, 2009, 43(4): 227-234. |
[10] | Wallis I, Prommer H, Berg M, et al. The river-groundwater interface as a hotspot for arsenic release[J]. Nature Geoscience, 2020, 13(4): 288-295. |
[11] | 左玉涛, 孔文亮, 代义彬, 等. 某工业场地土壤砷的空间分布及As(Ⅲ)迁移规律研究[J]. 土壤通报, 2024, 55(2): 502-512. |
[Zuo Yutao, Kong Wenliang, Dai Yibin, et al. Investigation of spatial distribution and migration pattern of arsenic in soils of industrial sites[J]. Chinese Journal of Soil Science, 2024, 55(2): 502-512. ] | |
[12] | 安礼航, 刘敏超, 张建强, 等. 土壤中砷的来源及迁移释放影响因素研究进展[J]. 土壤, 2020, 52(2): 234-246. |
[An Lihang, Liu Minchao, Zhang Jianqiang, et al. Sources of arsenic in soil and affecting factors of migration and release: A review[J]. Soil, 2020, 52(2): 234-246. ] | |
[13] | 郭华明, 倪萍, 贾永锋, 等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘, 2014, 21(4): 1-12. |
[Guo Huaming, Ni Ping, Jia Yongfeng, et al. Types, chemical characteristics and genesis of geogenic high-arsenic groundwaterin the world[J]. Earth Science Frontiers, 2014, 21(4): 1-12. ] | |
[14] | Goldberg S. Competitive adsorption of arsenate and arsenite on oxides and clay minerals[J]. Soil Science Society of America Journal, 2002, 66(2): 413-421. |
[15] | Anderson M A, Malotky D T. The adsorption of protolyzable anions on hydrous oxides at the isoelectric pH[J]. Journal of Colloid & Interface Science, 1979, 72(3): 413-427. |
[16] | Huang S, Wang Y, Liu C, et al. Hydrochemical and fluorescent spectroscopic evidences of arsenic mobilization in groundwater[J]. Earth Science, 2013, 38(5): 1091-1098. |
[17] | Hug S J, Leupin O X, Berg M. Bangladesh and vietnam: Different groundwater compositions require different approaches to arsenic mitigation[J]. Environmental Science & Technology, 2008, 42(17): 6318-6323. |
[18] |
贾永锋, 郭华明. 高砷地下水研究的热点及发展趋势[J]. 地球科学进展, 2013, 28(1): 51-61.
doi: 10.11867/j.issn.1001-8166.2013.01.0051 |
[Jia Yongfeng, Guo Huaming. Hot topics and trends in the study of high arsenic groundwater[J]. Advances in Earth Science, 2013, 28(1): 51-61. ]
doi: 10.11867/j.issn.1001-8166.2013.01.0051 |
|
[19] | 陈劲松, 周金龙, 曾妍妍, 等. 新疆阿克苏地区平原区高砷地下水分布特征及富集因素分析[J]. 环境化学, 2021, 40(1): 254-262. |
[Chen Jinsong, Zhou Jinlong, Zeng Yanyan, et al. Spatial distribution and enrichment factors of high-arsenic-groundwater in the plain area of Aksu Prefecture, Xinjiang[J]. Environmental Chemistry, 2021, 40(1): 254-262. ] | |
[20] | Shao F, Wang W, He J. Groundwater-surface water exchange and spatial distribution of arsenic in arid and semi-arid regions: The case of Aksu River in Xinjiang, Northwestern China[J]. Water, 2023, 15(13): 2391. |
[21] | 刘君, 庹见伟, 戴思芸, 等. 阿克苏地区2018—2020年农村饮用水中砷元素含量及价态的监测分析[J]. 中国地方病防治, 2021, 36(4): 367-368. |
[Liu Jun, Tuo Jianwei, Dai Siyun, et al. Monitoring and analysis of arsenic content and valence state in rural drinking water in Aksu region from 2018 to 2020[J]. Chinese Journal of Control of Endemic Diseases, 2021, 36(4): 367-368. ] | |
[22] | 彭天昊, 李升, 高远, 等. 阿克苏河流域高砷地下水分布特征及成因分析[J]. 科学技术与工程, 2023, 23(9): 3662-3671. |
[Peng Tianhao, Li Sheng, Gao Yuan, et al. Distribution characteristics and genesis analysis of groundwater with high arsenic content in Aksu River Basin[J]. Science Technology and Engineering, 2023, 23(9): 3662-3671. ] | |
[23] | 潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. |
[Pan Huanying, Zou Changjian, Bi Junbo, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high fluoride groundwater in a typicalpiedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203. ] | |
[24] | 李强, 刘天超, 李通, 等. 新疆阿克苏河流域水文地质环境地质调查报告[R]. 乌鲁木齐: 新疆方圆地质矿产勘查院(有限公司), 2019. |
[Li Qiang, Liu Tianchao, Li Tong, et al. Hydrogeological and Environmental Geological Survey Report of Aksu River Basin in Xinjiang[R]. Urumqi: Xinjiang Fangyuan Geological and Mineral Exploration Institute (Co., Ltd.), 2019. ] | |
[25] | 余斌. 基于同位素技术的阿克苏河流域地下水循环研究[D]. 乌鲁木齐: 新疆大学, 2021. |
[Yu Bin. The Research on Groundwater Circulation in Aksu River Basin Based on Isotope technology[D]. Urumqi: Xinjiang University, 2021. ] | |
[26] | 余斌, 李升, 王友年. 阿克苏河流域地表水与地下水转化关系研究[J]. 人民长江, 2021, 52(8): 56-62, 70. |
[Yu Bin, Li Sheng, Wang Younian. Transformation of surface water and groundwater in Aksu River Basin[J]. Yellow River, 2021, 52(8): 56-62, 70. ] | |
[27] | Li J, Zhou Y, Zhou J, et al. Hydrogeochemical evidence for fluoride sources and enrichment in desert groundwater: A case study of Cherchen River Basin, northwestern China[J]. Journal of Contaminant Hydrology, 2023, 259: 104270. |
[28] | Carbonell-Barrachina A, Jugsujinda A, Burlo F, et al. Arsenic chemistry in municipal sewage sludge as affected by redox potential and pH[J]. Water Research, 2000, 34(1): 216-224. |
[29] | 鲁力, 李升, 高远, 等. 渭-库绿洲土壤盐分空间分布及变异特征[J]. 干旱区资源与环境, 2022, 36(3): 136-142. |
[Lu Li, Li Sheng, Gao Yuan, et al. Spatial distribution and variation characteristics of soil salinity in the oasis of Weigan and Kuga Rivers[J]. Journal of Arid Land Resources and Environment, 2022, 36(3): 136-142. ] | |
[30] | Lu L, Li S, Wu R, et al. Study on the scale effect of spatial variation in soil salinity based on geostatistics: A case study of Yingdaya River irrigation area[J]. Land, 2022, 11(10): 1697. |
[31] | 雷米, 周金龙, 周殷竹, 等. 天山北麓中段绿洲带高砷地下水中砷的迁移转化规律[J]. 地球科学, 2024, 49(1): 253-270. |
[Lei Mi, Zhou Jinlong, Zhou Yinzhu, et al. Migration and transformation mechanism of high arsenic groundwater in oasis belt in the middle part of northern piedmont of Tianshan Mountain[J]. Earth Science, 2024, 49(1): 253-270. ] | |
[32] | Yan Y, Zhang J, Wu N, et al. Co-occurrence of elevated arsenic and fluoride concentrations in Wuliangsu Lake: Implications for the genesis of poor-quality groundwater in the (paleo-)Huanghe (Yellow River) catchment, China[J]. Water Research, 2024, 258: 121767. |
[33] | Li Z, Cao W, Ren Y, et al. Enrichment mechanisms for the co-occurrence of arsenic-fluoride-iodine in the groundwater in different sedimentary environments of the Hetao Basin, China[J]. Science of the Total Environment, 2022, 839: 156184. |
[34] | Mailloux B J, Person M, Kelley S, et al. Tectonic controls on the hydrogeology of the Rio Grande Rift, New Mexico[J]. Water Resources Research, 1999, 35(9): 2641-2659. |
[35] | 刘亚雷, 高永进, 张君峰, 等. 塔里木盆地温宿凸起构造特征新认识[J]. 岩石学报, 2022, 38(9): 2665-2680. |
[Liu Yalei, Gao Yongjin, Zhang Junfeng, et al. New understanding of tectonic characteristic of the Wensu salient in Tarim Basin[J]. Acta Petrologica Sinica, 2022, 38(9): 2665-2680. ] | |
[36] | 代美芹. 新疆天山南麓阿克苏地区1/50万水文地质普查报告[R]. 乌鲁木齐: 新疆地质局水文地质大队, 1965. |
[Dai Meiqin. Hydrogeological Survey Report of 1/500000 in Aksu Prefecture, Southern Foothills of Tianshan Mountains, Xinjiang[R]. Urumqi: Hydrogeological Brigade of Xinjiang Geological Bureau, 1965. ] | |
[37] | Xu P, Bian J, Li Y, et al. Characteristics of fluoride migration and enrichment in groundwater under the influence of natural background and anthropogenic activities[J]. Environmental Pollution, 2022, 314: 120208. |
[38] | 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1986: 15-35. |
[Shen Zhaoli. Hydrogeochemical Fundamentals[M]. Beijing: Geological Publishing House, 1986: 15-35. ] | |
[39] |
Pili E, Tisserand D, Bureau S. Origin, mobility, and temporal evolution of arsenic from a low-contamination catchment in Alpine crystalline rocks[J]. Journal of Hazardous Materials, 2013, 262: 887-895.
doi: 10.1016/j.jhazmat.2012.07.004 pmid: 22819960 |
[40] |
孙英, 周金龙, 杨方源, 等. 塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因[J]. 地学前缘, 2022, 29(3): 99-114.
doi: 10.13745/j.esf.sf.2022.1.33 |
[Sun Ying, Zhou Jinlong, Yang Fangyuan, et al. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin[J]. Earth Science Frontiers, 2022, 29(3): 99-114. ]
doi: 10.13745/j.esf.sf.2022.1.33 |
|
[41] |
Kumar M, Das A, Das N, et al. Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, Northeastern India[J]. Chemosphere, 2016, 150: 227-238.
doi: S0045-6535(16)30171-0 pmid: 26901480 |
|