Arid Zone Research ›› 2024, Vol. 41 ›› Issue (8): 1300-1308.doi: 10.13866/j.azr.2024.08.04
• Weather and Climate • Previous Articles Next Articles
ZHANG Qunhui1(), CHANG Liang1,2,3, GU Xiaofan1,2,3, WANG Qian1, MA Maonan4, LI Xiaodeng1, DUAN Rui1, YOU Xiangzhi1
Received:
2023-11-18
Revised:
2024-02-21
Online:
2024-08-15
Published:
2024-08-22
ZHANG Qunhui, CHANG Liang, GU Xiaofan, WANG Qian, MA Maonan, LI Xiaodeng, DUAN Rui, YOU Xiangzhi. Spatial-temporal variations and trends in the human body comfort index in the Qaidam Basin, China, during 1979-2020[J].Arid Zone Research, 2024, 41(8): 1300-1308.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Multi-year average and trends of air temperature, wind speed, and specific humidity during 1979‒2020"
气象要素 | 气温 | 风速 | 比湿 | |||||
---|---|---|---|---|---|---|---|---|
多年平均 /℃ | 变化趋势 /(℃·a-1) | 多年平均 /(m·s-1) | 变化趋势 /(m·s-1·a-1) | 多年平均 /(kg·kg-1) | 变化趋势 /(kg·kg-1·a-1) | |||
全盆地 | 0.41 | 0.035 | 2.93 | -0.013 | 0.003 | 1x10-5 | ||
山区 | -2.27 | 0.032 | 2.75 | -0.013 | 0.003 | 1x10-5 | ||
平原区 | 3.88 | 0.039 | 3.16 | -0.013 | 0.003 | 1x10-5 |
Tab. 3
Hurst index of temperature, wind speed, specific humidity, and IBC"
Hurst 指数 | 气温 | 风速 | 比湿 | 人体舒适度指数 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
全盆地 | 山区 | 平原 | 全盆地 | 山区 | 平原 | 全盆地 | 山区 | 平原 | 全盆地 | 山区 | 平原 | ||||
春季 | 0.87 | 0.87 | 0.89 | 1 | 1 | 1 | 0.86 | 0.87 | 0.86 | 0.82 | 0.81 | 0.84 | |||
夏季 | 0.81 | 0.78 | 0.82 | 1 | 1 | 1 | 0.81 | 0.79 | 0.82 | 0.81 | 0.78 | 0.85 | |||
秋季 | 0.71 | 0.67 | 0.77 | 1 | 1 | 1 | 0.83 | 0.83 | 0.84 | 0.62 | 0.61 | 0.72 | |||
冬季 | 0.8 | 0.8 | 0.82 | 1 | 1 | 1 | 0.91 | 0.91 | 0.9 | 0.78 | 0.81 | 0.77 | |||
年平均 | 0.82 | 0.8 | 0.84 | 1 | 1 | 1 | 0.92 | 0.93 | 0.92 | 0.79 | 0.77 | 0.86 |
[1] | IPCC. Climate change 2021: The physical science basis[C]// LeeJ Y, MarotzkeJ, BalaG, et al. Future Global Climate:Scenario-42 Based Projections and Near-term Information. Cambridge: Cambridge University Press, 2021: 1-195. |
[2] | 周天军, 陈梓明, 陈晓龙, 等. IPCC AR6 报告解读:未来的全球气候——基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17(6): 652-663. |
[ Zhou Tianjun, Chen Ziming, Chen Xiaolong, et al. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information[J]. Climate Change Research, 2021, 17(6): 652-663. ] | |
[3] | 姜彤, 翟建青, 罗勇, 等. 气候变化影响适应和脆弱性评估报告进展: IPCC AR5到AR6的新认知[J]. 大气科学学报, 2022, 45(4): 502-511. |
[ Jiang Tong, Zhai Jianqing, Luo Yong, et al. Understandings of assessment reports on climate change impacts, adaptation and vulnerability: Progress from IPCC AR5 to IPCC AR6[J]. Transactions of Atmospheric Sciences, 2022, 45(4): 502-511. ] | |
[4] |
Liu Y, Cai W, Lin X, et al. Nonlinear El Niño impacts on the global economy under climate change[J]. Nature Communications, 2023, 14: 5887.
doi: 10.1038/s41467-023-41551-9 pmid: 37735448 |
[5] | 黄存瑞, 刘起勇. IPCC AR6报告解读: 气候变化与人类健康[J]. 气候变化研究进展, 2022, 18(4): 442-451. |
[ Huang Cunrui, Liu Qiyong. Interpretation of IPCC AR6 on climate change and human health[J]. Climate Change Research, 2022, 18(4): 442-451. ] | |
[6] | Wang J, Yan Z W. Rapid rises in the magnitude and risk of extreme regional heat wave events in China[J]. Weather and Climate Extremes, 2021, 34: 100379. |
[7] |
Perkins-Kirkpatrick S E, Lewis S C. Increasing trends in regional heatwaves[J]. Nature Communications, 2020, 11: 3357.
doi: 10.1038/s41467-020-16970-7 pmid: 32620857 |
[8] |
de Freitas C R, Grigorieva E A. A comprehensive catalogue and classification of human thermal climate indices[J]. International Journal of Biometeorology, 2015, 59(1): 109-120.
doi: 10.1007/s00484-014-0819-3 pmid: 24682541 |
[9] | Binarti F, Koerniawan M D, Triyadi S, et al. A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions[J]. Urban Climate, 2020, 31: 100531. |
[10] |
Blazejczyk K, Epstein Y, Jendritzky G, et al. Comparison of UTCI to selected thermal indices[J]. International Journal of Biometeorology, 2012, 56: 515-535.
doi: 10.1007/s00484-011-0453-2 pmid: 21614619 |
[11] |
Epstein Y, Moran D S. Thermal comfort and the heat stress indices[J]. Industrial Health, 2006, 44(3): 388-98.
doi: 10.2486/indhealth.44.388 pmid: 16922182 |
[12] |
Jendritzky G, de Dear R, Havenith G. UTCI—why another thermal index?[J]. International Journal of Biometeorology, 2012, 56(3): 421-428.
doi: 10.1007/s00484-011-0513-7 pmid: 22187087 |
[13] | 蔚丹丹, 李山, 张粮锋, 等. 旅游气候舒适性评价:模型优化与中国案例[J]. 旅游学刊, 2021, 36(5): 14-28. |
[ Yu Dandan, Li Shan, Zhang Liangfeng, et al. Evaluate tourism climate using modified holiday climate index in China[J]. Tourism Tribune, 2021, 36(5): 14-28. ] | |
[14] | 王国新, 钱莉莉, 陈韬, 等. 旅游环境舒适度评价及其时空分异——以杭州西湖为例[J]. 生态学报, 2015, 35(7): 2206-2216. |
[ Wang Guoxin, Qian Lili, Chen Tao, et al. Evaluation of tourism environmental comfort and its spatial-temporal differentiation: A case study of West Lake in Hangzhou, China[J]. Acta Ecologica Sinica, 2015, 35(7): 2206-2216. ] | |
[15] | 关靖云, 李东, 徐晓亮, 等. 近40年新疆旅游气候舒适期的时空格局及其演变研究[J]. 西南大学学报(自然科学版), 2022, 44(6): 185-197. |
[ Guan Jingyun, Li Dong, Xu Xiaoliang, et al. Spatialtemporal pattern and evolution of tourism climate comfort period in Xinjiang in recent 40 years[J]. Journal of Southwest University (Natural Science Edition), 2022, 44(6): 185-197. ] | |
[16] | 官景得, 王咏青, 孙银川, 等. 近39 a宁夏旅游气候适宜期及变化分析[J]. 干旱区地理, 2020, 43(2): 339-348. |
[ Guan Jingde, Wang Yongqing, Sun Yinchuan, et al. Suitable period and change of tourism climate in Ningxia in the past 39 years[J]. Arid Land Geography, 2020, 43(2): 339-348. ] | |
[17] | 马丽君, 孙根年. 中国西部热点城市旅游气候舒适度[J]. 干旱区地理, 2009, 32(5): 791-797. |
[ Ma Lijun, Sun Gennian. Evaluation of climate comfort index for tourism hot-spot cities in west China[J]. Arid Land Geography, 2009, 32(5): 791-797. ] | |
[18] | Matthews L, Scott D, Andrey J. Development of a data-driven weather index for beach parks tourism[J]. International Journal of Biometeorology, 2021, 65: 749-762. |
[19] | 雷桂莲, 喻迎春, 刘志萍, 等. 南昌市人体舒适度指数预报[J]. 江西气象科技, 1999(3): 40-41. |
[ Lei Guilian, Yu Yingchun, Liu Zhiping, et al. Forecast of human body comfort index in Nanchang[J]. Jiangxi Meteorological Science and Technology, 1999(3): 40-41. ] | |
[20] | 贾传. 基于人体舒适度的近地表城市热岛效应研究[D]. 大连: 辽宁师范大学, 2023. |
[ Jia Chuan. Study on Near Surface Urban Heat Island Effect Based on Human Comfort[D]. Dalian: Liaoning Normal University, 2023. ] | |
[21] | Zheng Z. Characteristics of climate warming and human body comfort index in Beijing during last 50 years[J]. Advanced Materials Research, 2011, 183-185: 1105-1109. |
[22] | 胡琳, 胡淑兰, 苏静, 等. 陕西省人体舒适度变化及其对气象因子的响应[J]. 干旱区研究, 2019, 36(6): 1450-1456. |
[ Hu Lin, Hu Shulan, Su Jing, et al. Variation of comfort index of human body and its response to meteorological factors in Shaanxi Province[J]. Arid Zone Research, 2019, 36(6): 1450-1456. ] | |
[23] | 高理, 刘焕彬. 1991—2021年山东省人体舒适度时空分布特征[J]. 海洋气象学报, 2023, 43(3): 71-79. |
[ Gao Li, Liu Huanbin. Spatial and temporal distribution of body comfort index in Shandong Province from 1991 to 2021[J]. Journal of Marine Meteorology, 2023, 43(3): 71-79. ] | |
[24] | 曹永强, 赵慧, 李可欣, 等. 辽宁省气候舒适度变化及其对气象因子的响应[J]. 人民珠江, 2022, 43(8): 47-53. |
[ Cao Yongqiang, Zhao Hui, Li Kexin, et al. Climate comfort changes and its response to meteorological factors in Liaoning Province[J]. Pearl River, 2022, 43(8): 47-53. ] | |
[25] | 黄鹤楼, 邹旭恺, 丁烨毅, 等. 气候变化对宁波四明山人体舒适度的影响[J]. 气候变化研究进展, 2020, 16(3): 316-324. |
[ Huang Helou, Zou Xukai, Ding Yeyi, et al. The impact of climate change on human comfort in the Siming Mountains in Ningbo, China[J]. Climate Change Research, 2020, 16(3): 316-324. ] | |
[26] | 金满慧, 王兴丽, 张东琴, 等. 气候变暖背景下甘南高原人体舒适度时空分布特征[J]. 农业灾害研究, 2022, 12(6): 83-85. |
[ Jin Manhui, Wang Xingli, Zhang Dongqin, et al. Temporal and spatial distribution characteristics of human comfort in Gannan Plateau under the background of climate warming[J]. Agricultural Disaster Research, 2022, 12(6): 83-85. ] | |
[27] | 蔡嘉仪, 李长顺, 杨晓燕, 等. 福建省避暑旅游气候条件及适宜性分析[J]. 海峡科学, 2022(7): 14-19. |
[ Cai Jiayi, Li Changshun, Yang Xiaoyan, et al. Analysis of climatic conditions and suitability of summer tourism in Fujian Province[J]. Strait Science, 2022(7): 14-19. ] | |
[28] | 范琳, 刘楠, 赵力, 等. 荒漠类型自然保护区空间布局及区划[J]. 中国水土保持科学, 2023, 21(6): 80-92. |
[ Fan Lin, Liu Nan, Zhao Li, et al. Spatial layout and regionalization of desert nature reserves[J]. Science of Soil and Water Conservation, 2023, 21(6): 80-92. ] | |
[29] |
屈欣, 郜学敏, 王萌, 等. 柴达木盆地地质遗迹资源评价[J]. 中国沙漠, 2022, 42(1): 167-174.
doi: 10.7522/j.issn.1000-694X.2021.00156 |
[ Qu Xin, Gao Xuemin, Wang Meng, et al. Evaluation on the geological heritage resources of the Qaidam Basin, China[J]. Journal of Desert Research, 2022, 42(1): 167-174. ]
doi: 10.7522/j.issn.1000-694X.2021.00156 |
|
[30] | 阳坤, 姜尧志, 唐文君, 等. 第三极地区长时间序列高分辨率地面气象要素驱动数据集(TPMFD, 1979-2022)[DB/OL]. 国家青藏高原数据中心, 2022. |
[ Yang Kun, Jiang Yaozhi, Tang Wenjun, et al. A high-resolution near-surface meteorological forcing dataset for the Third Pole region (TPMFD, 1979-2022)[DB/OL]. National Tibetan Plateau / Third Pole Environment Data Center, 2022. ] | |
[31] | 叶汀, 杨汉波, 霍军军. 西藏主要流域年径流的变化趋势及其原因[J]. 水力发电学报, 2023, 42(9): 46-57. |
[ Ye Ting, Yang Hanbo, Huo Junjun. Change trends of runoff in major river basins in Tibetan Autonomous Region and their causes[J]. Journal of Hydroelectric Engineering, 2023, 42(9): 46-57. ] | |
[32] | 佘王康, 杨勤丽, 阳坤, 等. 青藏高原雪水比例时空变化特征[J]. 水科学进展, 2024, 35(2): 348-356. |
[ She Wangkang, Yang Qinli, Yang Kun, et al. Spatiotemporal variation characteristics of snowfall-precipitation ratio on the Qinghai-Tibet Plateau[J]. Advances in Water Science, 2024, 35(2): 348-356. ] | |
[33] | 中国气象局. 气候资源评价气候宜居城镇: QX/T570-2020[S]. 北京: 气象出版社, 2020. |
[ China Meteorological Administration. Climate Resource Assessment-Climate Livable Cities:QX/T570-2020[S]. Beijing: China Meteorological Press, 2020. ] | |
[34] | Hurst H E. Long-term storage capacity of reservoirs[J]. Transactions of the American Society of Civil Engineers, 1951, 116(1): 770-799. |
[35] | 张钦, 唐海萍, 崔凤琪, 等. 基于标准化降水蒸散指数的呼伦贝尔草原干旱变化特征及趋势分析[J]. 生态学报, 2019, 39(19): 7110-7123. |
[ Zhang Qin, Tang Haiping, Cui Fengqi, et al. SPEI-based analysis of drought characteristics and trends in Hulun Buir grassland[J]. Acta Ecologica Sinica, 2019, 39(19): 7110-7123. ] | |
[36] |
张志强, 刘欢, 左其亭, 等. 2000—2019年黄河流域植被覆盖度时空变化[J]. 资源科学, 2021, 43(4): 849-858.
doi: 10.18402/resci.2021.04.18 |
[ Zhang Zhiqiang, Liu Huan, Zuo Qiting, et al. Spatiotemporal change of fractional vegetation cover in the Yellow River Basin during 2000-2019[J]. Resources Science, 2021, 43(4): 849-858. ]
doi: 10.18402/resci.2021.04.18 |
|
[37] |
刘婷婷, 朱秀芳, 孙劭, 等. 阈值选择对高温时空变化特征的影响[J]. 地理科学, 2023, 43(4): 726-736.
doi: 10.13249/j.cnki.sgs.2023.04.016 |
[ Liu Tingting, Zhu Xiufang, Sun Shao, et al. Impact of threshold selection on the spatiotemporal change characteristics of high temperature[J]. Scientia Geographica Sinica, 2023, 43(4): 726-736. ]
doi: 10.13249/j.cnki.sgs.2023.04.016 |
|
[38] | 雷杨娜, 张侠, 赵晓萌. 1971—2018年陕西省人体舒适度时空分布特征研究[J]. 干旱区地理, 2020, 43(6): 1417-1425. |
[ Lei Yangna, Zhang Xia, Zhao Xiaomeng. Spatial-temporal distribution characteristics of comfort index of human body in Shaanxi Province from 1971 to 2018[J]. Arid Land Geography, 2020, 43(6): 1417-1425. ] | |
[39] |
郭广, 张静, 马守存, 等. 1961—2010 年青海省人体舒适度指数时空分布特征[J]. 冰川冻土, 2015, 37(3): 845-854.
doi: 10.7522/j.issn.1000-0240.2015.0094 |
[ Guo Guang, Zhang Jing, Ma Shoucun, et al. Spatial-temporal distribution characteristics analysis of comfort of human body index in Qinghai Province from 1961 to 2010[J]. Journal of Glaciology and Geocryology, 2015, 37(3): 845-854. ]
doi: 10.7522/j.issn.1000-0240.2015.0094 |
|
[40] | 张红丽, 韩富强, 张良, 等. 西北地区气候暖湿化空间与季节差异分析[J]. 干旱区研究, 2023, 40(4): 517-531. |
[ Zhang Hongli, Han Fuqiang, Zhang Liang, et al. Analysis of spatial and seasonal variations in climate warming and humidification in Northwest China[J]. Arid Zone Research, 2023, 40(4): 517-531. ] |
[1] | CAI Yuqin, QI Donglin, WANG Liefu, LI Haifeng, ZHANG Deqin. Spatial and temporal evolution characteristics of different grades of cold days in Qinghai Province [J]. Arid Zone Research, 2024, 41(5): 742-752. |
[2] | LI Hong, LI Zhongqin, CHEN Puchen, PENG Jiajia. Spatio-temporal variation of snow cover in Altai Mountains of Xinjiang in recent 20 years and its influencing factors [J]. Arid Zone Research, 2023, 40(7): 1040-1051. |
[3] | HUI Rong, TAN Huijuan, HUANG Lei, LI Xinrong. Characteristics of nutrient and enzyme activity in salt-affected soils of the Qaidam Basin [J]. Arid Zone Research, 2023, 40(11): 1776-1784. |
[4] | YANG Haijiao,WEI Jiahua,REN Qianhui. Interaction between surface water and groundwater and hydrochemical characteristics in the typical watersheds of the Qaidam Basin [J]. Arid Zone Research, 2022, 39(5): 1543-1554. |
[5] | SANG Jing,WANG Yingbin,QIAN Lianhong,WANG Haimei,WANG Qiyu. Analysis of the relationship between the dynamic snowmelt process of meadow grassland and meteorological factors: Ergun City [J]. Arid Zone Research, 2022, 39(5): 1428-1436. |
[6] | GAO Xiaoyu,TANG Pengcheng,ZHANG Sha,QU Zhongyi,YANG Wei. Drought characteristics and regression models of drought characteristics and response factors of various climatic areas in Inner Mongolia during main crop growing season [J]. Arid Zone Research, 2022, 39(5): 1410-1427. |
[7] | QIANG Yuquan,XU Xianying,ZHANG Jinchun,LIU Hujun,GUO Shujiang,DUAN Xiaofeng. Characteristics of stem sap flow of Haloxylon ammodendron and its response to environmental factors in Qingtu Lake, Minqin [J]. Arid Zone Research, 2022, 39(4): 1143-1154. |
[8] | WEN Guangchao,LI Xing,WU Bingjie,WANG Xiaohe,XIE Hongbo. An automatic method for delineating lake surfaces in Qaidam Basin using Landsat images [J]. Arid Zone Research, 2022, 39(3): 774-786. |
[9] | ZHANG Yaozong,ZHANG Bo,ZHANG Duoyong,LIU Yanyan. Spatio temporal patterns of pan evaporation from 1960 to 2018 over the Loess Plateau: Changing properties and possible causess [J]. Arid Zone Research, 2022, 39(1): 1-9. |
[10] | YANG Qi,LI Shuheng,LI Jiahao,WANG Jiachuan. Phenology of forest vegetation and its response to climate change in the Qinling Mountains [J]. Arid Zone Research, 2021, 38(4): 1065-1074. |
[11] | CHEN Jing,GUO Xiaoning,BAI Wenjuan,WEN Xia,YANG Yanhua. Spatiotemporal characteristics and influencing factors of dust weather in Qaidam Basin in recent 60 years [J]. Arid Zone Research, 2021, 38(4): 1040-1047. |
[12] | HONG Guangyu,WANG Xiaojiang,LIU Guohou,ZHANG Lei,GAO Xiaowei,LI Zhuofan,LIU Tieshan,LIU Chenming,LI Zihao. Characteristics of Salix psammophila sap flow and its response to environmental factors in Mu Us Sandy Land [J]. Arid Zone Research, 2021, 38(3): 794-801. |
[13] | LIU Yihua,LI Hongmei,WEN Tingting,SHEN Hongyan,HANG Zhongquan,ZHU Baowen. Risk zoning of summer rainstorm disaster and its influence in Qaidam Basin [J]. Arid Zone Research, 2021, 38(3): 757-763. |
[14] | CAO Lijun,SUN Huilan,LAN Xiaoli,ZHANG Lele,LU Baobao,LIU Tianyi. Spatio-temporal evolution of the extreme dry and wet events in Tianshan Mountains, Xinjiang, China [J]. Arid Zone Research, 2021, 38(1): 188-197. |
[15] | CHEN Zhi-qing, SHAO Tian-jie, ZHAO Jing-bo, CAO Jun-ji, YUE Da-peng. Spatial-temporal differentiation of near-surface ozone concentration and dominant meteorological factors in Inner Mongolia [J]. Arid Zone Research, 2020, 37(6): 1504-1512. |
|