[1] |
Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.
doi: 10.1016/j.ecoenv.2004.06.010
pmid: 15590011
|
[2] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(7): 651-681.
doi: 10.1146/arplant.2008.59.issue-1
|
[3] |
张磊, 侯云鹏, 王立春. 盐碱胁迫对植物的影响及提高植物耐盐碱性的方法[J]. 东北农业科学, 2018, 43(4): 11-16.
|
|
[Zhang Lei, Hou Yunpeng, Wang Lichun. Effect of alkaline salt stress on plant and method of enhancing saline-alkali resistance[J]. Journal of Northeast Agricultural Sciences, 2018, 43(4): 11-16.]
|
[4] |
Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1-14.
doi: 10.1007/s00425-003-1105-5
pmid: 14513379
|
[5] |
Rozema J, Flowers T. Crops for a salinized world[J]. Science, 2008, 322(5907): 1478-1480.
doi: 10.1126/science.1168572
pmid: 19056965
|
[6] |
邓文浩, 吕新芳. 大叶藻耐盐机理的研究进展[J]. 植物生理学报, 2018, 54(5): 718-724.
|
|
[Deng Wenhao, Lv Xinfang. Advances in studies on salt-tolerance mechanism of Zostera marina[J]. Plant Physiology Journal, 2018, 54(5): 718-724.]
|
[7] |
Qi X L, Xu W G, Zhang J Z, et al. Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress[J]. Protoplasma, 2016, 254(2): 1017-1030.
doi: 10.1007/s00709-016-1010-y
|
[8] |
李子英, 丛日春, 杨庆山, 等. 盐碱胁迫对柳树幼苗生长和渗透调节物质含量的影响[J]. 生态学报, 2017, 37(24): 8511-8517.
|
|
[Li Ziying, Cong Richun, Yang Qingshan, et al. Effects of saline-alkali stress on growth and osmotic adjustment substances in willow seedlings[J]. Acta Ecologica Sinica, 2017, 37(24): 8511-8517.]
|
[9] |
袁琳, 克热木·伊力, 张利权. NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J]. 植物生态学报, 2005, 6(43): 119-125.
|
|
[Yuan Lin, Karim Ali, Zhang Liquan. Effects of NaCl stress on active oxygen metabolism and membrane stability in Pistacia vera seedlings[J]. Acta Phytoecologica Sinica, 2005, 6(43): 119-125.]
|
[10] |
许盼云, 吴玉霞, 何天明. 植物对盐碱胁迫的适应机理研究进展[J]. 中国野生植物资源, 2020, 39(10): 41-49.
|
|
[Xu Panyun, Wu Yuxia, He Tianming. Research progress on adaptation mechanism of plants to saline-alkali stress[J]. Chinese Wild Plant Resources, 2020, 39(10): 41-49.]
|
[11] |
王宝强, 赵颖, 朱晓林, 等. 盐碱胁迫对藜麦幼苗叶片光合特性及抗氧化系统的影响[J]. 草地学报, 2021, 29(8): 1689-1696.
doi: 10.11733/j.issn.1007-0435.2021.08.011
|
|
[Wang Baoqiang, Zhao Ying, Zhu Xiaolin, et al. Effects of saline-alkali stress on photosynthesis characteristics and antioxidant system in Quinoa seedlings leaf[J]. Acta Agrestia Sinica, 2021, 29(8): 1689-1696.]
doi: 10.11733/j.issn.1007-0435.2021.08.011
|
[12] |
韩东洺, 张喜洋, 庞秋颖, 等. 萌芽菊芋块茎对盐碱土壤胁迫的生理响应[J]. 生态学报, 2017, 37(4): 1244-1251.
|
|
[Han Dongming, Zhang Xiyang, Pang Qiuying, et al. Physiological response of sprouting Jerusalem artichoke tubers to saline-alkali stress[J]. Acta Ecologica Sinica, 2017, 37(4): 1244-1251.]
|
[13] |
高凯, 高阳, 朱铁霞, 等. 盐碱胁迫对菊芋块茎萌发及幼苗生长的影响[J]. 草业科学, 2018, 35(12): 2915-2923.
|
|
[Gao Kai, Gao Yang, Zhu Tiexia, et al. Effect of saline-alkali stress on tuber germination and seedling growth of Helianthus tuberosus[J]. Pratacultural Science, 2018, 35(12): 2915-2923.]
|
[14] |
张蜀秋, 韩玉珍, 李云. 植物生理学实验技术教程[M]. 北京: 科学出版社, 2011.
|
|
[Zhang Shuqiu, Han Yuzhen, Li Yun. Plant Physiology Experimental Technology Course[M]. Beijing: Science Press, 2011.]
|
[15] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
|
|
[Li Hesheng. Principles and Techniques of Plant Physiology and Biochemistry Experiments[M]. Beijing: Higher Education Press, 2000.]
|
[16] |
孙聪聪, 赵海燕, 郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响[J]. 植物生理学报, 2017, 53(3): 470-476.
|
|
[Sun Congcong, Zhao Haiyan, Zheng Caixia. Effects of NaCl stress on osmolyte and proline metabolism in Ginkgo biloba seedling[J]. Plant Physiology Journal, 2017, 53(3): 470-476.]
|
[17] |
张永锋, 梁正伟, 隋丽, 等. 盐碱胁迫对苗期紫花苜蓿生理特性的影响[J]. 草业学报, 2009, 18(4): 230-235.
|
|
[Zhang Yongfeng, Liang Zhengwei, Sui Li, et al. Effect on physiological characteristic of Medicago sativa under saline-alkali stress at seeding stage[J]. Acta Prataculturae Sinica, 2009, 18(4): 230-235.]
|
[18] |
赵卓雅, 袁琳芳, 汪文潇, 等. 盐碱胁迫对榉树幼苗渗透调节的影响[J]. 安徽农学通报, 2020, 26(1): 16-18.
|
|
[Zhao Zhuoya, Yuan Linfang, Wang Wenxiao, et al. Effects of saline-alkali stress on osmotic adjustment of Zelkova schneideriana seedlings[J]. Anhui Agricultural Science Bulletin, 2020, 26(1): 16-18.]
|
[19] |
Amiri A, Baninasab B, Ghobadi C, et al. Zinc soil application enhances photosynthetic capacity and antioxidant enzyme activities in almond seedlings affected by salinity stress[J]. Photosynthetica, 2016, 54(2): 267-274.
doi: 10.1007/s11099-016-0078-0
|
[20] |
梁培鑫, 唐榕, 郭睿, 等. 混合盐碱胁迫对油莎豆生长及生理性状的影响[J]. 干旱区资源与环境, 2022, 36(10): 185-192.
|
|
[Liang Peixin, Tang Rong, Guo Rui, et al. Effect of mixed salt-alkaline stress on growth and physiological characteristics in Cyperus esculentus L.[J]. Journal of Arid Land Resources and Environment, 2022, 36(10): 185-192.]
|
[21] |
Hazman M, Hause B, Eiche E, et al. Increased tolerance to salt stress in OPDA-deficient rice Allene Oxide Cyclase mutants is linked to an increased ROS-scavenging activity[J]. Journal of Experimental Botany, 2015, 66(11): 3339-3352.
doi: 10.1093/jxb/erv142
pmid: 25873666
|
[22] |
徐宁, 曹娜, 王闯, 等. NaCl胁迫对野生和栽培品种高粱种子萌发和幼苗生理特性的影响[J]. 江苏农业科学, 2018, 46(18): 55-57.
|
|
[Xu Ning, Cao Na, Wang Chuang, et al. Effects of NaCl stress on seed germination and seedling physiological characteristics of wild and cultivar sorghum[J]. Jiangsu Agricultural Sciences, 2018, 46(18): 55-57.]
|
[23] |
李玉梅, 郭修武, 代汉萍. 牛叠肚幼苗对盐碱胁迫的生理响应及其耐盐阈值[J]. 西北植物学报, 2014, 34(6): 1213-1219.
|
|
[Li Yumei, Guo Xiuwu, Dai Hanping. Physiological response of Rubus crataegifolius bges. seedlings to saline stress and its salt tolerance threshold[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6): 1213-1219.]
|
[24] |
王鑫, 朱悦, 刘滨硕, 等. 盐碱胁迫下羊草抗氧化酶活性的变化[J]. 江苏农业科学, 2015, 43(5): 209-211.
|
|
[Wang Xin, Zhu Yue, Liu Binshuo, et al. Changes in antioxidant enzyme activity of Leymus chinensis under salt alkali stress[J]. Jiangsu Agricultural Sciences, 2015, 43(5): 209-211.]
|
[25] |
李波, 林浩. 紫花苜蓿对苏打盐碱胁迫的生理响应[J]. 黑龙江畜牧兽医, 2018, 61(1): 168-170.
|
|
[Li Bo, Lin Hao. Physiological response of alfalfa to soda saline alkali stress[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018, 61(1): 168-170.]
|
[26] |
李海燕, 邵金彩, 王静, 等. NaCl胁迫对5年生蜡梅生长及生理特性的影响[J]. 东北林业大学学报, 2021, 49(3): 31-38.
|
|
[Li Haiyan, Shao Jincai, Wang Jing, et al. Effects of NaCl stress on the growth and physiological characteristics of five-year Chimonanthus praecox[J]. Journal of Northeast Forestry University, 2021, 49(3): 31-38.]
|
[27] |
Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress[J]. Environmental and Experimental Botany, 2003, 49(1): 69-76.
doi: 10.1016/S0098-8472(02)00058-8
|
[28] |
田小磊, 吴晓岚, 李云, 等. 盐胁迫条件下 γ-氨基丁酸对玉米幼苗SOD、POD及CAT活性的影响[J]. 实验生物学报, 2005, 38(1): 75-79.
|
|
[Tian Xiaolei, Wu Xiaolan, Li Yun, et al. The effect of gamma-aminobutyric acid in superoxide dismutase, peroxidase and catalase activity response to salt stress in maize seedling[J]. Journal of Molecular Cell Biology, 2005, 38(1): 75-79.]
|