Arid Zone Research ›› 2022, Vol. 39 ›› Issue (1): 64-74.doi: 10.13866/j.azr.2022.01.07
Previous Articles Next Articles
ZHANG Junxia(),KONG Xiangwei(),LIU Xinwei,WANG Yong
Received:
2021-04-24
Revised:
2021-06-02
Online:
2022-01-15
Published:
2022-01-24
Contact:
Xiangwei KONG
E-mail:18419611389@163.com;xiangwei580@163.com
ZHANG Junxia,KONG Xiangwei,LIU Xinwei,WANG Yong. Spatial error characteristics of rainstorm forecasts of large-scale numerical model over the northeastern side of Tibetan Plateau[J].Arid Zone Research, 2022, 39(1): 64-74.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Statistics of rainstorm processes on the northeastern side of Tibet Plateau from May to September in 2019-2020, as well as the effective CRA and rainfall area"
暴雨天气过程 (年-月-日) | 暴雨区面积/km2 | 是否识别有效CRA ECMWF GRAPES-GFS | 暴雨天气过程 (年-月-日) | 暴雨区面积/km2 | 是否识别有效CRAECMWF GRAPES-GFS | ||
---|---|---|---|---|---|---|---|
2019-05-05 | 1709 | × | × | 2020-06-16 | 61783 | √ | √ |
2019-05-06 | 1832 | × | × | 2020-06-25 | 20154 | √ | × |
2019-06-04 | 13312 | √ | √ | 2020-07-10 | 11445 | √ | √ |
2019-06-05 | 9688 | × | × | 2020-07-11 | 2786 | × | × |
2019-06-20 | 15609 | √ | √ | 2020-07-23 | 16981 | × | × |
2019-06-27 | 33730 | × | × | 2020-07-24 | 11289 | √ | × |
2019-07-21 | 21002 | √ | × | 2020-08-03 | 3623 | × | × |
2019-07-28 | 6618 | × | × | 2020-08-04 | 39610 | √ | × |
2019-08-02 | 25670 | √ | √ | 2020-08-05 | 2159 | × | × |
2019-08-03 | 26854 | √ | √ | 2020-08-06 | 12724 | √ | × |
2019-08-08 | 4682 | × | × | 2020-08-07 | 2598 | × | × |
2019-08-19 | 1235 | × | × | 2020-08-10 | 6267 | × | × |
2019-08-26 | 11970 | √ | × | 2020-08-12 | 14230 | √ | √ |
2019-09-09 | 38960 | √ | √ | 2020-08-14 | 2200 | × | × |
2019-09-12 | 19184 | √ | × | 2020-08-15 | 44730 | √ | √ |
2019-09-13 | 10496 | × | × | 2020-08-16 | 19860 | √ | √ |
2019-09-14 | 55048 | √ | √ | 2020-08-17 | 4709 | × | × |
2020-05-07 | 5017 | × | × | 2020-08-23 | 7802 | × | × |
2020-06-15 | 3405 | × | × |
Tab. 2
The average location and intensity error of rainstorm [≥50 mm·(24h)-1] as well as the percentage of location, intensity and pattern error in the total error"
平均面积 误差/% | 平均雨强 误差/% | 最大降水量误差/% | 总降水量 误差/% | 落区误差 占比/% | 强度误差 占比/% | 形态误差 占比/% | 平均纬向 位移误差/(°) | 平均经向 位移误差/(°) | 平均纬向 质心误差/(°) | 平均经向 质心误差/(°) | |
---|---|---|---|---|---|---|---|---|---|---|---|
ECMWF | -16.20 | -11.49 | 1.47 | 3.51 | 26.93 | 20.73 | 52.36 | -0.34 | 0.08 | -0.36 | -0.11 |
GRAPES-GFS | -68.33 | -43.40 | -49.33 | -79.72 | 16.33 | 31.23 | 52.58 | -0.15 | 0.10 | -0.22 | 0.03 |
Tab. 3
Frequency distribution of rain area, average rainfall intensity and maximum precipitation deviation of rainstorm of ≥50 mm·(24h)-1"
平均雨强 | 最大降水量 | ||||||||
---|---|---|---|---|---|---|---|---|---|
偏弱 | 命中 | 偏强 | 偏弱 | 命中 | 偏强 | ||||
面积 | 偏大 | ECMWF | 0 | 0 | 3 | 0 | 2 | 1 | |
GRAPES-GFS | 0 | 0 | 0 | 0 | 0 | 0 | |||
命中 | ECMWF | 0 | 1 | 5 | 0 | 2 | 4 | ||
GRAPES-GFS | 0 | 2 | 0 | 2 | 0 | 0 | |||
偏小 | ECMWF | 7 | 2 | 0 | 8 | 2 | 0 | ||
GRAPES-GFS | 8 | 1 | 0 | 7 | 2 | 0 |
[1] | 王万筠, 殷海涛, 赵敬红, 等. 2014—2016年数值降水预报在天津的检验评估[J]. 气象科技, 2018, 46(4): 718-723. |
[Wang Wanjun, Yin Haitao, Zhao Jinghong, et al. Verification of numerical forecast products for TainJin precipitation forecast in recent three years[J]. Meteorological Science and Technology, 2018, 46(4): 718-723. ] | |
[2] |
Ebert E E, Mcbride J L. Verification of precipitation in weather systems: Determination of systematic errors[J]. Journal of Hydrology, 2000, 239(1): 179-202.
doi: 10.1016/S0022-1694(00)00343-7 |
[3] | 崔粉娥, 王勇, 李慧君. 多家数值产品沿海大暴雨预报性能检验[J]. 气象科技, 2013, 41(4): 696-702. |
[Cui Fen’e, Wang Yong, Li Huijun. Performance verification of coastal torrential rainfall forecast with several numerical products[J]. Meteorological Science and Technology, 2013, 41(4): 696-702. ] | |
[4] | Davis C A, Brown B G, Bullock R, et al. The method for object-based diagnostic evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program[J]. Weather & Forecasting, 2009, 24(5): 1252-1267. |
[5] | 戴建华, 茅懋, 邵玲玲, 等. 强对流天气预报检验新方法在上海的应用尝试[J]. 气象科技进展, 2013, 3(3): 42-47. |
[Dai Jianhua, Mao Mao, Shao Lingling, et al. Applications of a new verification method for severe convection forecasting and nowcasting in Shanghai[J]. Advances in Meteorological Science and Technology, 2013, 3(3): 42-47. ] | |
[6] | 刘凑华, 牛若芸. 基于目标的降水检验方法及应用[J]. 气象, 2013, 39(6): 681-690. |
[Liu Couhua, Niu Ruoyun. Object-based precipitation verification method and its application[J]. Meteorological Applications, 2013, 39(6): 681-690. ] | |
[7] |
Davis C, Brown B, Bullock R. Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas[J]. Monthly Weather Review, 2006, 134(7): 1772-1784.
doi: 10.1175/MWR3145.1 |
[8] |
Davis C, Brown B, Bullock R. Object-based verification of precipitation forecasts. Part II: Application to convective rain systems[J]. Monthly Weather Review, 2006, 134(7): 1785-1795.
doi: 10.1175/MWR3146.1 |
[9] | Marzban C, Sandgathe S. Cluster analysis for verification of precipitation fields[J]. Weather & Forecasting, 2006, 21(5): 824-838. |
[10] |
Gilleland E, Lee T C, Halley G J, et al. Computationally efficient spatial forecast verification using Baddeley’s delta image metric[J]. Monthly Weather Review, 2008, 136(5): 1747-1757.
doi: 10.1175/2007MWR2274.1 |
[11] |
Wernli H, Paulat M, Hagen M, et al. SAL: A novel quality measure for the verification of quantitative precipitation forecasts[J]. Monthly Weather Review, 2008, 136(11): 4470-4487.
doi: 10.1175/2008MWR2415.1 |
[12] | Wernli H, Hofmann C, Zimmer M. Spatial forecast verification methods intercomparison project: Application of the SAL technique[J]. Weather & Forecasting, 2009, 24(6): 1472-1484. |
[13] | 赵滨, 张博. 邻域空间检验方法在降水评估中的应用[J]. 暴雨灾害, 2017, 36(6): 497-504. |
[Zhao Bin, Zhang Bo. Application of neighborhood spatial verification method on precipitation evaluation[J]. Torrential Rain and Disasters, 2017, 36(6): 497-504. ] | |
[14] |
Ebert E E, Damrath U, Wergen W, et al. The WGNE assessment of short-term quantitative precipitation forecasts (QPFs) from operational numerical weather prediction models[J]. Bulletin of the American Meteorological Society, 2003, 84(4): 481-492.
doi: 10.1175/BAMS-84-4-Ebert |
[15] |
Sharma K, Ashrit R, Ebert E, et al. Assessment of Met Office Unified Model (UM) quantitative precipitation forecasts during the Indian summer monsoon: Contiguous Rain Area (CRA) approach[J]. Journal of Earth System Science, 2019, 128(1): 1-17.
doi: 10.1007/s12040-018-1037-x |
[16] |
Das A K, Kundu P K, Roy B, et al. Performance evaluation of WRF model with different cumulus parameterizations in forecasting monsoon depressions[J]. Mausam, 2019, 70(3): 501-522.
doi: 10.54302/mausam.v70i3 |
[17] | 符娇兰, 代刊. 基于CRA空间检验技术的西南地区东部强降水EC模式预报误差分析[J]. 气象, 2016, 42(12): 1456-1464. |
[Fu Jiaolan, Dai Kan. The ECMWF model precipitation systematic error in the east of Southwest China based on the contiguous rain area method for spatial forecast verification[J]. Meteorological Applications, 2016, 42(12): 1456-1464. ] | |
[18] | 王新敏, 栗晗. 多数值模式对台风暴雨过程预报的空间检验评估[J]. 气象, 2020, 46(6): 753-764. |
[Wang Xinmin, Li Han. Spatial verification evaluation of Typhoon rainstorm by multiple numerical models[J]. Meteorological Applications, 2020, 46(6): 753-764. ] | |
[19] | Yu Z, Chen Y J, Ebert B, et al. Benchmark rainfall verification of landfall tropical cyclone forecasts by operational ACCESS-TC over China[J]. Meteorological Applications, 2020, 27: e1842. |
[20] |
Zhuang Y, Tang X, Wang Y. Impact of track forecast error on tropical cyclone quantitative precipitation forecasts over the coastal region of China[J]. Journal of Hydrology, 2020, 589: 125347.
doi: 10.1016/j.jhydrol.2020.125347 |
[21] | 李栋梁, 邵鹏程, 王慧, 等. 中国东亚副热带夏季风北边缘带研究进展[J]. 高原气象, 2013, 32(1): 305-314. |
[Li Dongliang, Shao Pengcheng, Wang Hui, et al. Advances in research of the north boundary belt of East Asia Subtropical Summer Monsoon in China[J]. Plateau Meteorology, 2013, 32(1): 305-314. ] | |
[22] | 陈婕, 黄伟, 靳立亚, 等. 东亚夏季风的气候北界指标及其年际变化研究[J]. 中国科学: 地球科学, 2018, 48(1): 93-101. |
[Chen Jie, Huang Wei, Jin liya, et al. A climatological northern boundary index for East Asian Summer Monsoon and its interannual variability[J]. Scientia Sinica (Terrae), 2018, 48(1): 93-101. ] | |
[23] | 刘玉芝, 吴楚樵, 贾瑞, 等. 大气环流对中东亚干旱半干旱区气候影响研究进展[J]. 中国科学: 地球科学, 2018, 48(9): 1141-1152. |
[Liu Yuzhi, Wu Chuqiao, Jia Rui, et al. An overview of the influence of atmospheric circulation on the climate in arid and semi-arid region of Central and East Asia[J]. Scientia Sinica(Terrae), 2018, 48(9): 1141-1152. ] | |
[24] | 殷田园, 殷淑燕, 李富民. 秦岭南北区域夏季极端降水与西太平洋副热带高压的关系[J]. 干旱区研究, 2019, 36(6): 1379-1390. |
[Yin Tianyuan, Yin Shuyan, Li Fumin. Relationship between the summer extreme precipitation in the south and north of the Qinling Mountains and Western Pacific Subtropical High[J]. Arid Zone Research, 2019, 36(6): 1379-1390. ] | |
[25] | 姬凯, 王士新, 左洪超, 等. 东亚副热带急流经向位置对中国西北东部盛夏降水的影响[J]. 干旱区研究, 2020, 37(1): 10-17. |
[Ji Kai, Wang Shixin, Zuo Hongchao, et al. Effect of meridional position of East Asian Subtropical Jet on midsummer precipitation in eastern part of Northwest China[J]. Arid Zone Research, 2020, 37(1): 10-17. ] | |
[26] | 李栋梁, 谢金南, 王文. 中国西北夏季降水特征及其异常研究[J]. 大气科学, 1997, 21(3): 331-340. |
[Li Dongliang, Xie Jinnan, Wang Wen. A study of summer precipitation features and anomaly in Northwest China[J]. Chinese Journal of Atmospheric Sciences, 1997, 21(3): 331-340. ] | |
[27] | 杨昭明, 张调风. 1961—2017年青藏高原东北部雨季降水量变化及其贡献度分析[J] 干旱区研究, 2021, 38(1): 22-28. |
[Yang Zhaoming, Zhang Tiaofeng. Analysis of precipitation change and its contribution in the rainy season in the northeast Qinghai-Tibet Plateau from 1961-2017[J]. Arid Zone Research 2020, 38(1): 22-28. ] | |
[28] | 赵庆云, 宋松涛, 杨贵名, 等. 西北地区暴雨时空变化及异常年夏季环流特征[J]. 兰州大学学报(自然科学版), 2014, 50(4): 517-522. |
[Zhao Qingyun, Song Songtao, Yang Guiming, et al. Spatial and temporal variations of torrential rain over Northwest China and general circulation anomalies in summer[J]. Journal of Lanzhou University (Natural Sciences), 2014, 50(4): 517-522. ] | |
[29] | 黄玉霞, 王宝鉴, 黄武斌, 等. 我国西北暴雨的研究进展[J]. 暴雨灾害, 2019, 38(5): 515-525. |
[Huang Yuxia, Wang Baojian, Huang Wubin, et al. A review on rainstorm research in Northwest China[J]. Torrential Rain and Disasters, 2019, 38(5): 515-525. ] | |
[30] | 陈豫英, 陈楠, 任小芳, 等. 贺兰山东麓罕见特大暴雨的预报偏差和可预报性分析[J]. 气象, 2018, 44(1): 159-169. |
[Chen Yuying, Chen Nan, Ren Xiaofang, et al. Analysis on forecast deviation and predictability of a rare severe rainstorm along the eastern Helan Mountain[J]. Meteorological Monthly, 2018, 44(1): 159-169. ] | |
[31] | 杨侃, 纪晓玲, 毛璐, 等. 贺兰山两次特大致洪暴雨的数值模拟与地形影响对比[J]. 干旱气象, 2020, 38(4): 581-590. |
[Yang Kan, Ji Xiaoling, Mao Lu, et al. Numerical simulation and comparative analysis of topographic effects on two extraordinary severe flood rainstorms in Helan Mountain[J]. Journal of Arid Meteorology, 2020, 38(4): 581-590. ] | |
[32] | 刘凑华, 曹勇, 符娇兰. 基于变分法的客观分析算法及应用[J]. 气象学报, 2013, 71(6): 1172-1182. |
[Liu Couhua, Cao Yong, Fu Jiaolan. An objective analysis algorithm based on the variation method[J]. Acta Meteorologica Sinica, 2013, 71(6): 1172-1182. ] | |
[33] | 赵海英, 薄燕青, 邱贵强, 等. 地形对山西暴雨影响的数值模拟研究[J]. 气象与环境科学, 2017, 40(2): 84-91. |
[Zhao Haiying, Bo Yanqing, Qiu Guiqiang, et al. Numerical simulation study of topography effects on a severe rainstorm in Shanxi Province[J]. Meteorological and Environmental Sciences, 2017, 40(2): 84-91. ] |
[1] | ZHAO Yujuan, LU Yaqi, ZHANG Hongfen, ZHANG Kexin, ZHOU Zhongwen, Liu Ying. Comprehensive evaluation of atmospheric environmental parameters of short-duration rainstorm in Hedong region of Gansu Province based on fuzzy mathematics [J]. Arid Zone Research, 2023, 40(4): 543-551. |
[2] | CAO Yiqing,LONG Xiao,LI Chao,WANG Siyi,ZHAO Jianhua. Numerical study on the effect of low-level jet on two rainstorms on the east side of the Helan Mountain [J]. Arid Zone Research, 2022, 39(6): 1739-1752. |
[3] | HUANG Xiaolu,LI Ruiqing,LI Linhui,LIN Hongjie,YAO Lebao. Various characteristics of the mesoscale convection system of a convective rainstorm in the Hetao area of Inner Mongolia [J]. Arid Zone Research, 2022, 39(6): 1728-1738. |
[4] | LIU Yihua,LI Hongmei,WEN Tingting,SHEN Hongyan,HANG Zhongquan,ZHU Baowen. Risk zoning of summer rainstorm disaster and its influence in Qaidam Basin [J]. Arid Zone Research, 2021, 38(3): 757-763. |
[5] | YANG Xia,ZHOU Hongkui,XU Tingting,HUA Ye. Comparative analysis of the fine characteristics of different rainstorms in southern Xinjiang during summer [J]. Arid Zone Research, 2021, 38(3): 747-756. |
[6] | DING Ming-yue, WANG Li-li, XIN Yu, LIU Qiong, CHEN Yong-hang, ZHANG Guang-xin, YANG Lian-mei, LIANG Qian, HUANG Guan, LIU Tong-qiang. Diagnostic analysis and numerical simulation of a Central Asian vortex rainstorm based on CloudSat satellite data [J]. Arid Zone Research, 2020, 37(4): 936-946. |
[7] | WANG Fu-cun, XU Dong-bei,ZHANG De-yu, DAI De-bing, HAN Shu-pu, XIU Shao-yu. Diagnostic Analysis on a Rainstorm in the Eastern Part of Northwest China [J]. , 2014, 31(3): 452-462. |
[8] | HAN Jun-Cai, WANG Chuan-Hui, CHEN Jing, YAN Fang, YANG Peng, WANG Lei. Change of Rainstorm and Extreme Value of Precipitation in Different Periods in Shijiazhuang [J]. , 2013, 30(5): 796-801. |
[9] | YANG Xiao-Ling, DING Wen-Kui, QIAN Pei-Quan, YIN Yu-Chun, YAO Yu-Bi. A Rainstorm Weather in Wuwei City on July 29, 2012 [J]. , 2013, 30(5): 789-795. |
[10] | WANG Fu-Cun, WU Xiao-Jing, FU Shuang-Xi, Zhang-De-Yu- , TIAN Yu. Analysis on Characteristics of a Rainstorm Occurred in Dunhuang on June 16, 2011 [J]. , 2013, 30(1): 56-66. |
[11] | LI Ming, GAO Wei-ying, DU Ji-wen, HOU Jian-zhong. Analysis on the Heavy Rainstorms in Shaanxi Province in Relation to Typhoon Far Away [J]. , 2011, 28(3): 514-523. |
|