Arid Zone Research ›› 2022, Vol. 39 ›› Issue (1): 123-134.doi: 10.13866/j.azr.2022.01.13
Previous Articles Next Articles
Received:
2021-06-30
Revised:
2021-08-06
Online:
2022-01-15
Published:
2022-01-24
ZHOU Hong. A comparative study of ponded infiltration in a desert sandy soil based on multi-hydrological models[J].Arid Zone Research, 2022, 39(1): 123-134.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Soil hydraulic and structural properties in experimental site"
土壤深度/cm | 容重/(g·cm-3) | 初始含水量/(cm3·cm-3) | 土壤粒径分布/% | 土壤孔隙度/% | 土壤质地 | ||
---|---|---|---|---|---|---|---|
黏土(<0.002 mm) | 粉土(0.002~0.05 mm) | 砂土(>0.05 mm) | |||||
10 | 1.45 | 0.04 | 1.73 | 10.01 | 88.26 | 45.28 | 砂土 |
20 | 1.40 | 0.01 | 1.28 | 7.1 | 91.63 | 46.42 | 砂土 |
40 | 1.42 | 0.02 | 1.28 | 6.14 | 92.42 | 46.42 | 砂土 |
60 | 1.41 | 0.02 | 0.59 | 4.53 | 94.88 | 46.79 | 砂土 |
80 | 1.43 | 0.03 | 0.79 | 5.66 | 93.55 | 46.04 | 砂土 |
Tab. 2
Soil parameters for different soil layers in the experiment site"
土壤深度/cm | 饱和含水量/(cm3·cm-3) | 残余含水量/(cm3·cm-3) | 进气值/cm | 孔径分布指数 | 饱和导水率/(cm·d-1) |
---|---|---|---|---|---|
10 | 0.373 | 0.062 | 0.012 | 2.292 | 26.85 |
20 | 0.376 | 0.071 | 0.014 | 2.600 | 38.41 |
40 | 0.363 | 0.059 | 0.013 | 2.301 | 40.28 |
60 | 0.358 | 0.061 | 0.01 | 2.475 | 40.54 |
80 | 0.375 | 0.082 | 0.016 | 2.145 | 16.76 |
Tab. 3
Goodness-of-fit parameters for simulation results with models"
试验测定项目 | Kostiakov | Green-Ampt | Philip | Hydrus-1D | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE/(cm3·cm-3) | R2 | RMSE/(cm3·cm-3) | R2 | RMSE/(cm3·cm-3) | R2 | RMSE/(cm3·cm-3) | R2 | ||||
入渗速率/(cm·min-1) | 0.003 | 0.85 | 0.002 | 0.84 | 0.0003 | 0.95 | 0.004 | 075 | |||
累积入渗量/cm | 0.08 | 0.98 | 0.35 | 0.97 | 0.04 | 0.99 | 1.38 | 0.98 | |||
湿润锋距离/cm | - | - | 1.85 | 0.81 | 0.24 | 0.94 | - | 0.27 |
[1] |
Reynolds W D. An assessment of borehole infiltration analyses for measuring field-saturated hydraulic conductivity in the vadose zone[J]. Engineering Geology, 2013, 159: 119-130.
doi: 10.1016/j.enggeo.2013.02.006 |
[2] |
Bagarello V, Sferlazza S, Sgroi A. Comparing two methods of analysis of single-ring infiltrometer data for a sandy-loam soil[J]. Geoderma, 2009, 149(3-4): 415-420.
doi: 10.1016/j.geoderma.2008.12.022 |
[3] |
Xiao B, Sun F H, Hu K L. Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem[J]. Journal of Hydrology, 2019, 568: 792-802.
doi: 10.1016/j.jhydrol.2018.11.051 |
[4] |
Verbist K, Torfs S, Cornelis W M, et al. Comparison of single-and double-ring infiltrometer methods on stony soils[J]. Vadose Zone Journal, 2010, 9(2): 462.
doi: 10.2136/vzj2009.0058 |
[5] |
Alagna V, Bagarello V, Di Prima S, et al. Determining hydraulic properties of a loam soil by alternative infiltrometer techniques[J]. Hydrological Processes, 2016, 30(2): 263-275.
doi: 10.1002/hyp.v30.2 |
[6] |
Wang X J, Li H L, Yang J Z, et al. Measuring in situ vertical hydraulic conductivity in tidal environments[J]. Advances in Water Resources, 2014, 70: 118-130.
doi: 10.1016/j.advwatres.2014.05.004 |
[7] |
Daly E, Porporato A. A review of soil moisture dynamics: From rainfall infiltration to ecosystem response[J]. Environmental Engineering Science, 2005, 22(1): 9-24.
doi: 10.1089/ees.2005.22.9 |
[8] | 任杰, 沈振中, 杨杰, 等. 基于HYDRUS模型低温水入渗下土壤水热运移模拟[J]. 干旱区研究, 2016, 33(2): 246-252. |
[Ren Jie, Shen Zhengzhong, Yang Jie, et al. Simulation of water and heat transfer in soil under low-temperature water infiltration based on the HYDRUS model[J]. Arid Zone Research, 2016, 33(2): 246-252. ] | |
[9] |
Regalado C M, Ritter A, Álvarez B, et al. Simplified method to estimate the Green-Ampt wetting front suction and soil sorptivity with the Philip-Dunne falling-head permeameter[J]. Vadose Zone Journal, 2005, 4(2): 291.
doi: 10.2136/vzj2004.0103 |
[10] |
Putte A V, Govers G, Leys A, et al. Estimating the parameters of the Green-Ampt infiltration equation from rainfall simulation data: Why simpler is better[J]. Journal of Hydrology, 2013, 476: 332-344.
doi: 10.1016/j.jhydrol.2012.10.051 |
[11] |
Huo W, Li Z, Zhang K, et al. GA-PIC: An improved Green-Ampt rainfall-runoff model with a physically based infiltration distribution curve for semi-arid basins[J]. Journal of Hydrology, 2020, 586: 124900.
doi: 10.1016/j.jhydrol.2020.124900 |
[12] |
Zhang J, Lei T G, Chen T Q. Impact of preferential and lateral flows of water on single-ring measured infiltration process and its analysis[J]. Soil Science Society of America Journal, 2016, 80(4): 859.
doi: 10.2136/sssaj2015.12.0445 |
[13] |
Wang C Y, Mao X M, Hatano R. Modeling ponded infiltration in fine textured soils with coarse interlayer[J]. Soil Science Society of America Journal, 2014, 78(3): 745-753.
doi: 10.2136/sssaj2013.12.0535 |
[14] |
Sansoulet J L, Cabidoche Y M, Cattan P, et al. Spatially distributed water fluxes in an andisol under banana plants: Experiments and three-dimensional modeling[J]. Vadose Zone Journal, 2008, 7(2): 819-829.
doi: 10.2136/vzj2007.0073 |
[15] |
Mashayekhi P, Ghorbanidashtaki S, Mosaddeghi M R, et al. Different scenarios for inverse estimation of soil hydraulic parameters from double-ring infiltrometer data using HYDRUS-2D/3D[J]. International Agrophysics, 2016, 30(2): 203-210.
doi: 10.1515/intag-2015-0087 |
[16] |
Kandelous M M, Šimůnek J. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D[J]. Agricultural Water Management, 2010, 97(7): 1070-1076.
doi: 10.1016/j.agwat.2010.02.012 |
[17] |
Yi J, Zhao Y, Shao M A, et al. Hydrological processes and eco-hydrological effects of farmland-forest-desert transition zone in the middle reaches of Heihe River Basin, Gansu, China[J]. Journal of Hydrology, 2015, 529: 1690-1700.
doi: 10.1016/j.jhydrol.2015.08.017 |
[18] |
Stratford C J, Robins N S, Clarke D, et al. An ecohydrological review of dune slacks on the west coast of England and Wales[J]. Ecohydrology, 2013, 6(1): 162-171.
doi: 10.1002/eco.v6.1 |
[19] |
Zhang C C, Li X Y, Wang Y, et al. Responses of two desert shrubs to simulated rainfall pulses in an arid environment, northwestern China[J]. Plant and Soil, 2019, 435(1): 239-255.
doi: 10.1007/s11104-018-3892-2 |
[20] |
Diego Rivera, Mario Lillo, Stalin Granda. Representative locations from time series of soil water content using time stability and wavelet analysis[J]. Environmental Monitoring and Assessment, 2014, 186(12): 9075-9087.
doi: 10.1007/s10661-014-4067-0 pmid: 25249045 |
[21] |
Wang S, Fu B J, Gao G Y, et al. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China[J]. Catena, 2013, 101: 122-128.
doi: 10.1016/j.catena.2012.10.006 |
[22] |
Dohnal M, Vogel T, Dusek J, et al. Interpretation of ponded infiltration data using numerical experiments[J]. Journal of Hydrology and Hydromechanics, 2016, 64(3): 289-299.
doi: 10.1515/johh-2016-0020 |
[23] |
Chamizo S, Cantón Y, Domingo F, et al. Evaporative losses from soils covered by physical and different types of biological soil crusts[J]. Hydrological Processes, 2013, 27(3): 324-332.
doi: 10.1002/hyp.v27.3 |
[24] |
Cheng Q B, Chen X, Chen X H, et al. Water infiltration underneath single-ring permeameters and hydraulic conductivity determination[J]. Journal of Hydrology, 2011, 398(1-2): 135-143.
doi: 10.1016/j.jhydrol.2010.12.017 |
[25] | 石兰君, 乔晓英, 曾磊, 等. 甘肃黑方台黄土水分运移规律模拟[J]. 干旱区研究, 2018, 35(4): 813-820. |
[Shi Lanjun, Qiao Xiaoying, Zeng Lei, et al. Loess moisture migration in Heifangtai of Gansu Province[J]. Arid Zone Research, 2018, 35(4): 813-820. ] | |
[26] |
Smith R E. The infiltration envelope: Results from a theoretical infiltrometer[J]. Journal of Hydrology, 1972, 17: 1-21.
doi: 10.1016/0022-1694(72)90063-7 |
[27] | Uloma A R, Samuel A C, Kingsley I K. Estimation of Kostiakov’s infiltration model parameters of some sandy loam soils of Ikwuano-Umuahia, Nigeria[J]. Open Transactions on Geosciences, 2014, 1(1): 34-38. |
[28] |
Duan R B, Fedler C, Borrelli J. Field evaluation of infiltration models in lawn soils[J]. Irrigation Science, 2011, 29(5): 379-389.
doi: 10.1007/s00271-010-0248-y |
[29] | Lewis J D. Assessment of a Single-ring Sprinkle Infiltrometer Method for Evaluating Soil-based Stormwater Management Practices[D]. North Carolina, Raleigh: Graduate Faculty of North Carolina State University, 2016. |
[30] |
Sihag P, Tiwari N K, Ranjan S. Modelling of infiltration of sandy soil using gaussian process regression[J]. Modeling Earth Systems and Environment, 2017, 3(3): 1091-1100.
doi: 10.1007/s40808-017-0357-1 |
[31] |
Zolfaghari A A, Mirzaee S, Gorji M. Comparison of different models for estimating cumulative infiltration[J]. International Journal of Soil Science, 2012, 7(3): 108-115.
doi: 10.3923/ijss.2012.108.115 |
[32] | Ogbe V B, Jayeoba O J, Ode S O. Comparison of four soil infiltration models on a sandy soil in Lafia, Southern Guinea Savanna Zone of Nigeria[J]. Production Agriculture and Technology, 2011, 7(2): 116-126. |
[33] | 孙程鹏, 赵文智, 杨淇越. 绿洲边缘夹黏沙丘持水特性[J]. 生态学报, 2018, 38(11): 3879-3888. |
[Sun Chengpeng, Zhao Wenzhi, Yang Qiyue. Water retention of the clay interlayer of dunes at the edge of an oasis[J]. Acta Ecologica Sinica, 2018, 38(11): 3879-3888. ] | |
[34] | 崔浩浩, 张冰, 冯欣, 等. 不同土体构型土壤的持水性能[J]. 干旱地区农业研究, 2016, 34(4): 1-5. |
[Cui Haohao, Zhang Bing, Feng Xin, et al. Soil water-holding properties of different soil body configuration[J]. Agricultural Research in the Arid Areas, 2016, 34(4): 1-5. ] |
|