Arid Zone Research ›› 2025, Vol. 42 ›› Issue (10): 1828-1840.doi: 10.13866/j.azr.2025.10.07
• Land and Water Resources • Previous Articles Next Articles
HE Jianlan1(
), YAN Qingwu1, CHEN Yiyun2, LI Keqi1, BAI Junping3, WU Zihao1(
)
Received:2025-04-23
Revised:2025-07-21
Online:2025-10-15
Published:2025-10-22
Contact:
WU Zihao
E-mail:hhhjl@cumt.edu.cn;wuzh@cumt.edu.cn
HE Jianlan, YAN Qingwu, CHEN Yiyun, LI Keqi, BAI Junping, WU Zihao. Spatial prediction and master factors of soil organic carbon in the middle section of Tianshan Mountains[J].Arid Zone Research, 2025, 42(10): 1828-1840.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Information pertaining to environmental variables"
| 类别 | 影响因子 | 空间分辨率 | 数据来源 |
|---|---|---|---|
| 土壤属性(S) | 土壤类型 | 1 km | 国家地球系统科学数据中心( |
| 粉粒含量 | |||
| 砂粒含量 | |||
| 黏粒含量 | |||
| 全氮 | 90 m | ||
| 全磷 | |||
| 全钾 | |||
| pH | |||
| 砾石含量 | |||
| 土壤厚度 | |||
| 土壤湿度 | 0.05° | 国家生态科学数据中心( | |
| 气候因子(C) | 年均气温 | 1 km | 国家青藏高原科学数据中心( |
| 年均降水量 | |||
| 年均蒸发量 | |||
| 有机体(O) | 土地利用类型 | 1 km | 资源环境科学与数据平台( |
| 最大NDVI | 国家生态科学数据中心( | ||
| 植被净初级生产力 | 国家地球系统科学数据中心( | ||
| 人口密度 | 1 km | WorldPop( | |
| 地形因子(R) | 海拔 | 1 km | 地理空间数据云( |
| 坡度 |
| [1] | Chappell E, Easher T H, Saurette D, et al. Soil Organic Carbon:Past, Present, and Future Research[M]. Germany: Springer, 2021: 35-48. |
| [2] | Kuht J, Eremeev V, Talgre L, et al. Changes in the soil microbial hydrolytic activity and the content of organic carbon and total nitrogen by growing spring barley undersown with red clover in different farming systems[J]. Agriculture, 2019, 9(7): 146. |
| [3] | 张杰, 李敏, 敖子强, 等. 中国西部干旱区土壤有机碳储量估算[J]. 干旱区资源与环境, 2018, 32(9): 132-137. |
| [Zhang Jie, Li Min, Ao Ziqiang, et al. Estimation of soil organic carbon storage of terrestrial ecosystem in arid western China[J]. Journal of Arid Land Resources and Environment, 2018, 32(9): 132-137. ] | |
| [4] | Zhuo Z, Chen Q, Zhang X, et al. Soil organic carbon storage, distribution, and influencing factors at different depths in the dryland farming regions of Northeast and North China[J]. Catena, 2022, 21005934Z: Doi: 10.1016/j.catena.2021.105934. |
| [5] | 缪琦, 史学正, 于东升, 等. 气候因子对森林土壤有机碳影响的幅度效应研究[J]. 土壤学报, 2010, 47(2): 270-278. |
| [Liao Qi, Shi Xuezheng, Yu Dongsheng, et al. Scale effect of climatic factors on forest soil organic carbon[J]. Acta Pedologica Sinica, 2010, 47(2): 270-278. ] | |
| [6] | Yang L, Jia W, Shi Y, et al. Spatiotemporal differentiation of soil organic carbon of grassland and its relationship with soil physicochemical properties on the northern slope of Qilian Mountains, China[J]. Sustainability, 2020, 12(22): 9396. |
| [7] |
常帅, 于红博, 曹聪明, 等. 锡林郭勒草原土壤有机碳分布特征及其影响因素[J]. 干旱区研究, 2021, 38(5): 1355-1366.
doi: 10.13866/j.azr.2021.05.17 |
|
[Chang Shuai, Yu Hongbo, Cao Congming, et al. Distribution characteristics of soil organic carbon in Xilin Gol steppe and its influencing factors[J]. Arid Zone Research, 2021, 38(5): 1355-1366. ]
doi: 10.13866/j.azr.2021.05.17 |
|
| [8] | 韩雅, 朱文博, 李双成. 基于GWR模型的中国NDVI与气候因子的相关分析[J]. 北京大学学报(自然科学版), 2016, 52(6): 1125-1133. |
| [Han Ya, Zhu Wenbo, Li Shuangcheng. Modelling relationship between NDVI and climatic factors in China: Using geographically weighted regression[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(6): 1125-1133. ] | |
| [9] | 宋颖, 高明秀, 王佳凡, 等. 基于MGWR的滨海区土壤盐渍化分布空间预测及影响因素分析[J]. 环境科学, 2024, 45(7): 4293-4301. |
| [Song Ying, Gao Mingxiu, Wang Jiafan, et al. Spatial prediction and influencing factors analysis of soil salinization in coastal area based on MGWR[J]. Environmental Science, 2024, 45(7): 4293-4301. ] | |
| [10] | Hagenauer J, Helbich M. A geographically weighted artificial neural network[J]. International Journal of Geographical Information Science, 2022, 36(2): 215-235. |
| [11] | Wu Z, Chen Y, Yang Z, et al. Mapping soil organic carbon in low-relief farmlands based on stratified heterogeneous relationship[J]. Remote Sensing, 2022, 14(15): 3575. |
| [12] | Zhang C, Chen Y Y, Wei Y J, et al. Unraveling the threshold and interaction effects of environmental variables on soil organic carbon mapping in plateau watershed[J]. Geoderma, 2024, 450: 117032. |
| [13] | Zheng Y T, Zhao X N, Li X Y, et al. Mapping soil organic carbon density via geographically weighted regression with smooth terms: A case study in Shanxi Province[J]. Ecological Indicators, 2024, 166: 112588. |
| [14] | Chakraborty S K, Chandel N S, Jat D, et al. Deep learning approaches and interventions for futuristic engineering in agriculture[J]. Neural Computing & Applications, 2022, 34(23): 20539-20573. |
| [15] |
Padarian J, Minasny B, Mcbratney A B. Machine learning and soil sciences: A review aided by machine learning tools[J]. Soil, 2020, 6(1): 35-52.
doi: 10.5194/soil-6-35-2020 |
| [16] | Biau G, Scornet E. A random forest guided tour[J]. Test, 2016, 25(2): 197-227. |
| [17] | Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
| [18] | Friedman J H. Greedy function approximation: A gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232. |
| [19] | Liang W, Luo S, Zhao G, et al. Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms[J]. Mathematics, 2020, 8(5): 765. |
| [20] | Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system[C]// Assoc Comp M. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). San Francisco, CA: Assoc Computing Machinery, 2016: 785-794. |
| [21] | Pathy A, Meher S, Balasubramanian P. Predicting algal biochar yield using eXtreme Gradient Boosting (XGB) algorithm of machine learning methods[J]. Algal Research-Biomass Biofuels and Bioproducts, 2020, 50: 102006. |
| [22] |
Passafaro T L, Lopes F B, Dórea J R R, et al. Would large dataset sample size unveil the potential of deep neural networks for improved genome-enabled prediction of complex traits? The case for body weight in broilers[J]. Bmc Genomics, 2020, 21(1): 771.
doi: 10.1186/s12864-020-07181-x pmid: 33167865 |
| [23] | Shruti P, Rekha R. A review of convolutional neural networks, its variants and applications[C]// 2023 International Conference on Intelligent Systems for Communication, IoT and Security (ICISCoIS), 2023, 31-36. |
| [24] | Lundberg S M, Lee S-I. A unified approach to interpreting model predictions[C]// Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS). Long Beach, CA: Neural Information Processing Systems (NIPS), 2017: 4768-4777. |
| [25] | Islam M T, Xing L. Deciphering the feature representation of deep neural networks for high-performance AI[J]. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(8): 5273-5287. |
| [26] | Liu Q, Wang X D. Designing an efficient framework for large-scale data processing and analysis based on deep learning technology[C]// Assoc Comp M. Proceedings of the 3rd International Conference on Cyber Security, Artificial Intelligence and Digital Economy (CSAIDE). Nanjing: Assoc Computing Machinery, 2024: 269-274. |
| [27] | Wang S, Zhang Z, Geng S, et al. Research on optimization of random forest algorithm based on Spark[J]. Cmc-Computers Materials & Continua, 2022, 71(2): 3721-3731. |
| [28] | Shao Q, Xu Y M, Wu H Y. Spatial prediction of COVID-19 in China based on machine learning algorithms and geographically weighted regression[J]. Computational and Mathematical Methods in Medicine, 2021, 2021: 7196492. |
| [29] | Anding K, Haar L, Polte G, et al. Comparison of the performance of innovative deep learning and classical methods of machine learning to solve industrial recognition tasks[C]// Proceedings of the Joint TC1-TC2 International Symposium on Photonics and Education in Measurement Science. Germany: Spie-Int SOC Optical Engineering, 2019: UNSP 111440R. |
| [30] | Shwartz-Ziv R, Armon A. Tabular data: Deep learning is not all you need[J]. Information Fusion, 2021, 81: 84-90. |
| [31] | 洪岩, 袁琳, 李梦雪, 等. 产品生命周期视域下人工智能技术在服装产业中的应用进展[J]. 丝绸, 2024, 61(12): 1-22. |
| [Hong Yan, Yuan Lin, Li Mengxue, et al. Progress in the application of artificial intelligence technology in the garment industry from the perspective of product life cycle[J]. Journal of Silk, 2024, 61(12): 1-22. ] | |
| [32] | 李升波, 关阳, 侯廉, 等. 深度神经网络的关键技术及其在自动驾驶领域的应用[J]. 汽车安全与节能学报, 2019, 10(2): 119-145. |
| [Li Shengbo, Guan Yang, Hou Lian, et al. Key technique of deep neural network and its applications in autonomous driving[J]. Journal of Automotive Safety and Energy, 2019, 10(2): 119-145. ] | |
| [33] | 田芳, 周孝信, 史东宇, 等. 基于卷积神经网络的电力系统暂态稳定预防控制方法[J]. 电力系统保护与控制, 2020, 48(18): 1-8. |
| [Tian Fang, Zhou Xiaoxin, Shi Dongyu, et al. A preventive control method of power system transient stability based on a convolutional neural network[J]. Power System Protection and Control, 2020, 48(18): 1-8. ] | |
| [34] | 冯锦, 崔东, 孙国军, 等. 新疆土壤有机碳与土壤理化性质的相关性[J]. 草业科学, 2017, 34(4): 692-697. |
| [Feng Jin, Cui Dong, Sun Guojun, et al. Soil organic carbon in relation to soil physicochemical properties in Xinjiang[J]. Pratacultural Science, 2017, 34(4): 692-697. ] | |
| [35] |
马辉英, 李昕竹, 马鑫钰, 等. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131.
doi: 10.16258/j.cnki.1674-5906.2022.06.007 |
| [Ma Huiying, Li Xinzhu, Ma Xinyu, et al. Characteristics and driving factors of soil organic carbon fractions under different vegetation types of the mid-northern piedmont of the Tianshan Mountains, Xinjiang[J]. Ecology and Environmental Sciences, 2022, 31(6): 1124-1131. ] | |
| [36] | 傅华, 陈亚明, 王彦荣, 等. 阿拉善主要草地类型土壤有机碳特征及其影响因素[J]. 生态学报, 2004, 24(3): 469-476. |
| [Fu Hua, Chen Yaming, Wang Yanrong, et al. Organic carbon content in major grassland types in Alex, Inner Mongolia[J]. Acta Ecologica Sinica, 2004, 24(3): 469-476. ] | |
| [37] | 何志斌, 赵文智, 刘鹄, 等. 祁连山青海云杉林斑表层土壤有机碳特征及其影响因素[J]. 生态学报, 2006, 26(8): 2572-2577. |
| [He Zhibin, Zhao Wenzhi, Liu Hu, et al. Characteristic of Picea crassifolia forest soil organic carbon and relationship with environment factors in the Qilian Mountain[J]. Acta Ecologica Sinica, 2006, 26(8): 2572-2577. ] | |
| [38] | 刘伟, 程积民, 高阳, 等. 黄土高原草地土壤有机碳分布及其影响因素[J]. 土壤学报, 2012, 49(1): 68-76. |
| [Liu Wei, Cheng Jimin, Gao Yang, et al. Distribution of soil organic carbon in grassland on the Loess Plateau and its influencing factors[J]. Acta Pedologica Sinica, 2012, 49(1): 68-76. ] | |
| [39] |
聂祥琴, 陈瀚阅, 牛铮, 等. 基于时序影像的农业活动因子提取与闽西耕地SOC数字制图[J]. 地球信息科学学报, 2022, 24(9): 1835-1852.
doi: 10.12082/dqxxkx.2022.220015 |
| [Nie Xiangqin, Chen Hanyue, Niu Zheng, et al. Digital SOC mapping in croplands using agricultural activity factors derived from time-series data in western Fujian[J]. Journal of Geo-information Science, 2022, 24(9): 1835-1852. ] | |
| [40] |
李景, 吴会军, 武雪萍, 等. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量[J]. 中国农业科学, 2021, 54(2): 334-344.
doi: 10.3864/j.issn.0578-1752.2021.02.009 |
|
[Li Jing, Wu Huijun, Wu Xueping, et al. Long-term conservation tillage enhanced organic carbon and nitrogen contents of particulate organic matter in soil aggregates[J]. Scientia Agricultura Sinica, 2021, 54(2): 334-344. ]
doi: 10.3864/j.issn.0578-1752.2021.02.009 |
|
| [41] | 潘依依, 何云峰, 单立楠, 等. 沙漠化土壤有机碳研究进展[J]. 土壤通报, 2011, 42(6): 1515-1521. |
| [Pan Yiyi, He Yunfeng, Shan Linan, et al. A review on soil organic carbon during desertification progresses[J]. Chinese Journal of Soil Science, 2011, 42(6): 1515-1521. ] | |
| [42] | Iversen C, Norby R J S N. Global Environmental Change[M]. Germany: Springer Reference, 2014: 297-316. |
| [43] |
李玉露, 吴雪晴, 袁野, 等. 黑龙江省植被碳-水利用效率时空演变及其驱动机制[J]. 应用生态学报, 2024, 35(12): 3349-3358.
doi: 10.13287/j.1001-9332.202412.006 |
|
[Li Yulu, Wu Xueqing, Yuan Ye, et al. Spatial-temporal variation and driving mechanism of vegetation carbon and water use efficiency in Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2024, 35(12): 3349-3358. ]
doi: 10.13287/j.1001-9332.202412.006 |
|
| [44] | Tavakkoli E, Uddin S, Rengasamy P, et al. Field applications of gypsum reduce pH and improve soil C in highly alkaline soils in southern Australia’s dryland cropping region[J]. Soil Use and Management, 2022, 38(1): 466-477. |
| [45] | Zuo W, Xu L, Qiu M, et al. Effects of different exogenous organic materials on improving soil fertility in Coastal Saline-alkali soil[J]. Agronomy-Basel, 2023, 13(1): 61. |
| [46] | Zhang Y, Li F, Lu Z, et al. Organic amendments effects on soil aggregation and carbon sequestration in saline-alkaline croplands in China[J]. Agronomy Journal, 2023, 115(4): 2083-2095. |
| [1] | SHI Linqi, MA Quanlin, MA Rui, DUAN Xiaofeng, WEI Linyuan. Characterization of soil carbon fractions in typical sand-fixing vegetation at the southern edge of the Tengger Desert [J]. Arid Zone Research, 2025, 42(8): 1451-1462. |
| [2] | XING Xinran, ZHANG Yi, LI Peng, LIU Xiaojun, TAO Qingrui, REN Zhengyan, XU Shibin. Simulated effects of soil enzyme activity on soil organic carbon mineralization in dam land under dry and wet conditions [J]. Arid Zone Research, 2024, 41(11): 1969-1980. |
| [3] | MA Jilong, SHI Junhui, WANG Xinying, Aliya BAIDOURELA, LIU Maoxiu, Aijier ABULA. Effects of flood overflow on soil organic carbon and active components of Populus euphratica forest in the middle reaches of the Tarim River [J]. Arid Zone Research, 2023, 40(8): 1248-1257. |
| [4] | MENG Na, ZHANG Ying. Identification of priority areas for forest land expansion in Shanxi Province [J]. Arid Zone Research, 2023, 40(1): 111-122. |
| [5] | CHANG Shuai,YU Hongbo,CAO Congming,MA Zice,LIU Yuexuan,LI Xiang. Distribution characteristics of soil organic carbon in Xilin Gol steppe and its influencing factors [J]. Arid Zone Research, 2021, 38(5): 1355-1366. |
| [6] | ZHANG Yarou,AN Hui,WANG Bo,WEN Zhilin,DU Zhongyu,WU Xiuzhi,LI Qiaoling. Effects of short-term nitrogen and phosphorus addition on unprotected soil organic carbon in desert grassland [J]. Arid Zone Research, 2021, 38(1): 95-103. |
| [7] | LIU Lizhen,PANG Danbo,WANG Xinyun,CHEN Lin,LI Xuebin,WU Mengyao,LIU Bo,ZHU Zhongyou,LI Jingyao,WANG Jifei. Application of stable carbon isotope technique in soil organic carbon research: A literature review [J]. Arid Zone Research, 2021, 38(1): 123-132. |
| [8] | ZHAO Ling-di, FENG Jian, SUN Ling-xiao, YU Xiang, ZHAO Peng. Relationship between Water & Air Pollutant Emission and FDI in Arid Cities in Northwest China [J]. Arid Zone Research, 2020, 37(1): 67-73. |
| [9] | WANG Mei-jia, WANG Feng, SU Si-hui, SU Ye-han, SUN Yue, WANG Ying-yan, MENG Guang-Xin, JIANG Ying, QI Hua. Effects of Straw Turnover on Soil Water-Stable Aggregates and Soil Carbon Distribution [J]. Arid Zone Research, 2019, 36(2): 331-338. |
| [10] | LI Dian-peng, SUN Tao, YAO Mei-si, LIU Sui-yunhao, WANG Li-ping, WANG Hui, JIA Hong-tao. Carbon Density and Its Distribution Pattern of Ecosystem in Saline Region [J]. Arid Zone Research, 2018, 35(4): 984-991. |
| [11] | REN Guang-qi, JIA Xiao-xu, JIA Yu-hua, GUO Cheng-jiu. Spatial Variation of Soil Organic Carbon Content and Its Driving Factors along South-North Transect in the Loess Plateau of China [J]. Arid Zone Research, 2018, 35(3): 524-531. |
| [12] | FU Dong-lei,LIU Meng-yun,LIU Lin,ZHANG Kun,ZUO Jin-xiang. Organic Carbon Density and Storage in Different Soils on the Loess Plateau [J]. , 2014, 31(1): 44-50. |
| [13] | WANG Yuan-Gang, LUO Ge-Ping, FENG Yi-Xing, LI Chao-Fan, HAN Qi-Fei, FAN Bin-Bin. Vertical Distribution of Soil Organic Carbon in Different Land Cover Types in Northern Piedmont of the Tianshan Mountains [J]. , 2013, 30(5): 913-918. |
| [14] | SU Jian-hong, ZHU Xin-ping, WANG Xin-jun, JIA Hong-tao, ZHAO Cheng-yi, HU Yu-kun, LI Li-jun. Effects of Long-term Enclosure on Spatial Variation of Soil Organic Carbon Content in the Bayanbulak Subalpine Steppe [J]. Arid Zone Research, 2012, 29(6): 997-1002. |
| [15] | WANG Cheng, LI Ning, WANG Xing-Peng, ZHANG Jun, JIANG Qian, WANG Liang. Vertical Distribution of Soil Organic Carbon Content in Rhizosphere of Jujube at Its Different Growth Stages under Drip Irrigation with Salty Water [J]. , 2012, 29(5): 883-889. |
|
||